Analysis I

Prof. Mertins

WS 1994/95

Wilko Hein

Analysis I Prof. Mertins, WS 1994/95 Seite 1 von 27

Wilko Hein, Last change: 25.06.1996

Kapitel I. Die reellen Zahlen

A1: Kommutativität A2: Assoziativität A2: Assoziativität A3: Ex. d. Null A4: Ex. d. Inversen >R bzgl. Addition kommutative Gruppe A5: Kommutativität A6: Assoziativität A6: Assoziativität A6: Assoziativität A6: Assoziativität A7: Ex. d. Eins A7: Ex. d. Eins A8: Ex. d. Inversen	81	Körperaxiome	
A2: Assoziativität (a+b)+c = a+(b+c) A3: Ex. d. Null a+0=a A4: Ex. d. Inversen = >R bzgl. Addition kommutative Gruppe A5: Kommutativität a-b=b a A6: Assoziativität (a+b)-c=a-(b-c) A7: Ex. d. Eins a-1=a A8: Ex. d. Inversen a-a-a'=1 ⇒R\{0} bzgl. Multiplikation kommutative Gruppe A9: Distributivität a'-(b+c)=a-b+a-c A0: Sätze und Definitionen 1, Inverses eind. bestimmt, 1'=1, a-x=b genau eine Lsg., dadurch Quotienten definieren A3: Satz A1: Satz Bemerkung Menge K mit Verknüpfungen heißt Körper, wenn (A1)-(A9) gelten mit K anstelle von R. Beispiele Q Körper Z kein Körper K₂={0,1}, +: mod 2, · wie gewohnt, ist kleinster Körper \$2	21		a+b=b+a
A3: Ex. d. Null A4: Ex. d. Inversen ⇒ R bzgl. Addition kommutative Gruppe A5: Kommutativität A6: Assoziativität A6: Assoziativität A7: Ex. d. Eins A8: Ex. d. Inversen ⇒ R\{0} bzgl. Multiplikation kommutative Gruppe A9: Distributivität ⇒ R\{0} bzgl. Multiplikation kommutative Gruppe A9: Distributivität ⇒ R\{0} bzgl. Multiplikation kommutative Gruppe A9: Distributivität a·(b+c)=a·b+a·c 1.1 Sätze und Definitione 0. Inverses eind. bestimmt, -0=0, a+x=b genau eine Lsg., dadurch Differenz definieren. 1. Inverses eind. bestimmt, 1¹=1, a·x=b genau eine Lsg., dadurch Quotienten definieren 1. Inverses eind. bestimmt, 1¹=1, a·x=b genau eine Lsg., dadurch Quotienten definieren 1.3 Satz 1.4 Satz 1.5 Bemerkung Menge K mit Verknüpfungen heißt Körper, wenn (A1)-(A9) gelten mit K anstelle von R. 1.6 Beispiele Q Körper Z kein Körper K,={0,1}, +: mod 2, · wie gewohnt, ist kleinster Körper \$2 Anordnungsaxiome A10: Trichotonomie a A11: Transitivität a a A12: Monotoniegesetz a A12: Monotoniegesetz a A12: Monotoniegesetz a A12: Monotoniegesetz a A12: Monotoniegesetz a Beicheregeln in Ungleichungen 3. Satz Gleichgesinnte Ungleichungen addierbar, aber nicht subtrahier- oder multiplizierbar! 2.4 Satz Rechenregeln Semerkung Körper K, in dem Anordnung mit (A10)-(A12) gegeben, heißt angeordneter Körper.			
A4: Ex. d. Inversen => R bzgl. Addition kommutative Gruppe A5: Kommutativität			
=> R bzgl. Addition kommutative Gruppe A5: Kommutativität a-b=ba A6: Assoziativität (a-b)-c=a-(b-c) A7: Ex. d. Eins a-l=a A8: Ex. d. Inversen a-a-i'=1 ⇒ RV{0} bzgl. Multiplikation kommutative Gruppe A9: Distributivität a-(b+c)=a-b+a-c 1.1 Sätze und Definitionen 0, Inverses eind. bestimmt, -0=0, a+x=b genau eine Lsg., dadurch Differenz definieren. 1.2 Sätze und Definitionen 1, Inverses eind. bestimmt, 1¹=1, a-x=b genau eine Lsg., dadurch Quotienten definieren 1.3 Satz 1.4 Satz 1.5 Bemerkung Menge K mit Verknüpfungen heißt Körper, wenn (A1)-(A9) gelten mit K anstelle von R. 1.6 Beispiele Q Körper Z kein Körper K₂=(0,1), +: mod 2, · wie gewohnt, ist kleinster Körper \$2 Anordnungsaxiome A10: Trichotonomie a-⟨b, a=b, a>b A11: Transitivität a-⟨b, b <c (a10)-(a12)="" 2.4="" 2.5="" a+⟨c="" a-⟨b="" a-⟨c}="" a12:="" aber="" addierbar,="" angeordneter="" anordnung="" dem="" division="" gegeben,="" heißt="" in="" k,="" körper.<="" mit="" monotoniegesetz="" multiplizierbar!="" nicht="" oder="" rechenregeln="" rörper="" satz="" subtrahier-="" td="" ungleichungen="" ⇒="" ⟨b+⟨c}=""><td></td><td></td><td></td></c>			
A5: Kommutativität a-b-b-a A6: Assoziativität (a-b)-c-a-(b-c) A7: Ex. d. Eins A8: Ex. d. Ins A8: Ex. d. Inversen => R\{0} bzgl. Multiplikation kommutative Gruppe A9: Distributivität a-(b-c)=a-b+a-c 1.1 Sätze und Definitionen 0, Inverses eind, bestimmt, -0=0, a+x=b genau eine Lsg., dadurch Differenz definieren. 1.2 Sätze und Definitionen 1, Inverses eind, bestimmt, 1 ⁻¹ =1, a-x=b genau eine Lsg., dadurch Quotienten definieren. 1.3 Satz 1.4 Satz 1.5 Bemerkung Menge K mit Verknüpfungen heißt Körper, wenn (A1)-(A9) gelten mit K anstelle von R. 1.6 Beispiele Q Körper Z kein Körper K ₂ ={0,1}, +: mod 2, · wie gewohnt, ist kleinster Körper \$2 Anordnungsaxiome A10: Trichotonomie a A11: Transitivität a-cb, b-cc => a-cc A12: Monotoniegesetz a-(b-c) => a+c A12: Monotoniegesetz a-(c) => a+c A12: Definition Größer, Kleiner gleich, Größer gleich 2.2 Satz Rechenregeln in Ungleichungen addierbar, aber nicht subtrahier- oder multiplizierbar! 2.4 Satz Rechenregeln 2.5 Satz Rechenregeln 2.6 Bemerkung Körper K, in dem Anordnung mit (A10)-(A12) gegeben, heißt angeordneter Körper.			• •
A6: Assoziativität (a-b)-c=a-(b-c) A7: Ex. d. Eins a-1=a A8: Ex. d. Inversen a-a-1=1 => R\{0} bzgl. Multiplikation kommutative Gruppe A9: Distributivität a-(b+c)=a-b+a-c 1.1 Sätze und Definitionen 0, Inverses eind. bestimmt, -0=0, a+x=b genau eine Lsg., dadurch Differenz definieren. 1.2 Sätze und Definitionen 1, Inverses eind. bestimmt, 1-1=1, a-x=b genau eine Lsg., dadurch Quotienten definieren 1.3 Satz 1.4 Satz 1.5 Bemerkung Menge K mit Verknüpfungen heißt Körper, wenn (A1)-(A9) gelten mit K anstelle von R. 1.6 Beispiele Q Körper Z kein Körper K z={0,1}, +: mod 2, · wie gewohnt, ist kleinster Körper \$2 Anordnungsaxiome A10: Trichotonomie a-k-b, a-b, a-b A11: Transitivität a-k-b, b-c => a-c A12: Monotoniegesetz a-k-b => a+c < b+c, a-lcl < b-lcl 2.1 Definition Größer, Kleiner gleich, Größer gleich 2.2 Satz Rechenregeln in Ungleichungen 2.3 Satz Gleichgesinnte Ungleichungen addierbar, aber nicht subtrahier- oder multiplizierbar! 2.4 Satz Rechenregeln 2.5 Satz Rechenregeln Division 2.6 Bemerkung Körper K, in dem Anordnung mit (A10)-(A12) gegeben, heißt angeordneter Körper.		=	
A7: Ex. d. Eins A8: Ex. d. Inversen => R\{0} bzgl. Multiplikation kommutative Gruppe A9: Distributivität => R\{0} bzgl. Multiplikation kommutative Gruppe A9: Distributivität a (b+c)=a·b+a·c 1.1 Sätze und Definitionen 0, Inverses eind. bestimmt, -0=0, a+x=b genau eine Lsg., dadurch Differenz definieren. 1.2 Sätze und Definitionen 1, Inverses eind. bestimmt, 1°=1, a·x=b genau eine Lsg., dadurch Quotienten definieren 1.3 Satz 1.4 Satz 1.5 Bemerkung Menge K mit Verknüpfungen heißt Körper, wenn (A1)-(A9) gelten mit K anstelle von R. 1.6 Beispiele Q Körper Z kein Körper K₂={0,1}, +: mod 2, · wie gewohnt, ist kleinster Körper \$2 Anordnungsaxiome A10: Trichotonomie A11: Transitivität a <b, b<c=""> a<c a12:="" a<b="" monotoniegesetz=""> a+c < b+c, a-lcl < b-lcl 2.1 Definition Größer, Kleiner gleich, Größer gleich 2.2 Satz Rechenregeln in Ungleichungen 2.3 Satz Gleichgesinnte Ungleichungen addierbar, aber nicht subtrahier- oder multiplizierbar! 2.4 Satz Rechenregeln 2.5 Satz Rechenregeln Division 2.6 Bemerkung Körper K, in dem Anordnung mit (A10)-(A12) gegeben, heißt angeordneter Körper.</c></b,>			
A8: Ex. d. Inversen a-a-1=1 ⇒ R\{0} bzgl. Multiplikation kommutative Gruppe A9: Distributivität a-(b+c)=a-b+a-c 1.1 Sätze und Definitionen 0, Inverses eind. bestimmt, -0=0, a+x=b genau eine Lsg., dadurch Differenz definieren. 1.2 Sätze und Definitionen 1, Inverses eind. bestimmt, 1-1=1, a-x=b genau eine Lsg., dadurch Quotienten definieren 1.3 Satz 1.4 Satz 1.5 Bemerkung Menge K mit Verknüpfungen heißt Körper, wenn (A1)-(A9) gelten mit K anstelle von R. 1.6 Beispiele Q Körper Z kein Körper K₂={0,1}, +: mod 2, · wie gewohnt, ist kleinster Körper 82 Anordnungsaxiome A10: Trichotonomie a A11: Transitivität a A12: Monotoniegesetz a A12: Monotoniegesetz a Rechenregeln in Ungleichungen 2.3 Satz Rechenregeln in Ungleichungen addierbar, aber nicht subtrahier- oder multiplizierbar! 2.4 Satz Rechenregeln 2.5 Satz Rechenregeln Division 2.6 Bemerkung Körper K, in dem Anordnung mit (A10)-(A12) gegeben, heißt angeordneter Körper.			
=> R\{0} bzgl. Multiplikation kommutative Gruppe A9: Distributivität a-(b+c)=a-b+a-c 1.1 Sätze und Definitionen 0, Inverses eind. bestimmt, -0=0, a+x=b genau eine Lsg., dadurch Differenz definieren. 1.2 Sätze und Definitionen 1, Inverses eind. bestimmt, 1⁻=1, a-x=b genau eine Lsg., dadurch Quotienten definieren 1.3 Satz 1.4 Satz 1.5 Bemerkung Menge K mit Verknüpfungen heißt Körper, wenn (A1)-(A9) gelten mit K anstelle von R. 1.6 Beispiele Q Körper Z kein Körper K₂={0,1}, +: mod 2, · wie gewohnt, ist kleinster Körper \$2 Anordnungsaxiome A10: Transitivität a-b, b-c ⇒ a-c A12: Monotoniegesetz a-b ⇒ a+c < b+c, a- c < b- c 2.1 Definition Größer, Kleiner gleich, Größer gleich 2.2 Satz Rechenregeln in Ungleichungen 2.3 Satz Gleichgesinnte Ungleichungen addierbar, aber nicht subtrahier- oder multiplizierbar! 2.4 Satz Rechenregeln 2.5 Satz Rechenregeln Division 2.6 Bemerkung Körper K, in dem Anordnung mit (A10)-(A12) gegeben, heißt angeordneter Körper.			
A9: Distributivität a-(b+c)=a-b+a-c 1.1			
1.1 Sätze und Definitionen 0, Inverses eind. bestimmt, -0=0, a+x=b genau eine Lsg., dadurch Differenz definieren. 1.2 Sätze und Definitionen 1, Inverses eind. bestimmt, 1 =1, a-x=b genau eine Lsg., dadurch Quotienten definieren 1.3 Satz 1.4 Satz 1.5 Bemerkung Menge K mit Verknüpfungen heißt Körper, wenn (A1)-(A9) gelten mit K anstelle von R. 1.6 Beispiele Q Körper Z kein Körper K ₂ ={0,1}, +: mod 2, · wie gewohnt, ist kleinster Körper §2 Anordnungsaxiome A10: Trichotonomie a A11: Transitivität a A12: Monotoniegesetz a A12: Monotoniegesetz a A12: Monotoniegesetz a Beinkiton Größer, Kleiner gleich, Größer gleich 2.1 Definition Größer, Kleiner gleich, Größer gleich 2.2 Satz Rechenregeln in Ungleichungen 2.3 Satz Gleichgesinnte Ungleichungen addierbar, aber nicht subtrahier- oder multiplizierbar! 2.4 Satz Rechenregeln 2.5 Satz Rechenregeln Division 2.6 Bemerkung Körper K, in dem Anordnung mit (A10)-(A12) gegeben, heißt angeordneter Körper.		_	
0, Inverses eind. bestimmt, -0=0, a+x=b genau eine Lsg., dadurch Differenz definieren. 1.2	1.1	Sätze und Definitionen	, ,
1.2			a+x=b genau eine Lsg., dadurch Differenz definieren.
1, Inverses eind. bestimmt, 1'=1, a-x=b genau eine Lsg., dadurch Quotienten definieren 1.3 Satz 1.4 Satz 1.5 Bemerkung	1 2		,
1.4	1.2		, a·x=b genau eine Lsg., dadurch Quotienten definieren
Menge K mit Verknüpfungen heißt Körper, wenn (A1)-(A9) gelten mit K anstelle von R. 1.6 Beispiele Q Körper Z kein Körper K₂={0,1}, +: mod 2, · wie gewohnt, ist kleinster Körper 82 Anordnungsaxiome A10: Trichotonomie A11: Transitivität A12: Monotoniegesetz A	1.3	Satz	
Menge K mit Verknüpfungen heißt Körper, wenn (A1)-(A9) gelten mit K anstelle von R. Beispiele Q Körper Z kein Körper K₂={0,1}, +: mod 2, · wie gewohnt, ist kleinster Körper Anordnungsaxiome A10: Trichotonomie A11: Transitivität A12: Monotoniegesetz A12: Monotoniegesetz A12: Monotoniegesetz A13: Monotoniegesetz A14: Monotoniegesetz A15: Monotoniegesetz A16: Satz Rechenregeln in Ungleichungen A17: Satz Rechenregeln A18: Satz Rechenregeln A19: Monotoniegesetz A10:	1.4	Satz	
1.6	1.5	Bemerkung	
Q Körper Z kein Körper K ₂ ={0,1}, +: mod 2, · wie gewohnt, ist kleinster Körper 82		e	eißt Körper, wenn (A1)-(A9) gelten mit K anstelle von R.
A10: Trichotonomie A11: Transitivität A12: Monotoniegesetz A2b = A+c < b+c, a-lcl < b-lcl A1cl	1.6	Q Körper Z kein Körper	hnt, ist kleinster Körper
A10: Trichotonomie A11: Transitivität A12: Monotoniegesetz A2b = A+c < b+c, a-lcl < b-lcl A1cl	82	Anordnungsaviomo	
A11: Transitivität A12: Monotoniegesetz A12: Monotoniegesetz A12: Monotoniegesetz A12: Monotoniegesetz A12: Monotoniegesetz A2b => a+c < b+c, a·lcl < b·lcl A1c	<i>§</i> ² ······		a h a=h a>h
A12: Monotoniegesetz a Definition Größer, Kleiner gleich, Größer gleich Satz Rechenregeln in Ungleichungen Satz Gleichgesinnte Ungleichungen addierbar, aber nicht subtrahier- oder multiplizierbar! Satz Rechenregeln Satz Rechenregeln Satz Rechenregeln Bemerkung Körper K, in dem Anordnung mit (A10)-(A12) gegeben, heißt angeordneter Körper.			
 2.1 Definition Größer, Kleiner gleich, Größer gleich 2.2 Satz Rechenregeln in Ungleichungen 2.3 Satz Gleichgesinnte Ungleichungen addierbar, aber nicht subtrahier- oder multiplizierbar! 2.4 Satz Rechenregeln 2.5 Satz Rechenregeln Division 2.6 Bemerkung Körper K, in dem Anordnung mit (A10)-(A12) gegeben, heißt angeordneter Körper. 			
Größer, Kleiner gleich, Größer gleich 2.2	2.1	_	
2.2	<i>2</i> .1		rleich
Rechenregeln in Ungleichungen 2.3		, , , ,	gicien
2.3	2.2		
Gleichgesinnte Ungleichungen addierbar, aber nicht subtrahier- oder multiplizierbar! 2.4			
Rechenregeln 2.5	2.3		addierbar, aber nicht subtrahier- oder multiplizierbar!
2.5	2.4		
Rechenregeln Division 2.6		Rechenregeln	
2.6	2.5		
Körper K, in dem Anordnung mit (A10)-(A12) gegeben, heißt angeordneter Körper.	2.6	•	
	2.0	Körper K, in dem Anordnung m	
2.7 Satz "Ungleichung des Arithmetischen Mittels" $a < (a+b)/2 < b. Zwischen zwei reellen Zahlen stets eine dritte.$	2.7		

Analysis I Seite 2 von 27

2.8 Folgerung

Gilt für alle positiven ε 0≤a<ε, so ist a=0. Beweis: Gegenannahme, Arithmetisches Mittel

2.9 Definition

lal

2.10 Satz

|-a|=|a|, $a \le |a|$, $-a \le |a|$, $-|a| \le a \le |a|$

2.11 Satz

B1: Definitheit $0 \le |a|$, |a| = 0 <=> a = 0

B2: Multiplikativität |a·b|=|al·|bl|
B3: Dreiecksungleichung |a+b| ≤ |a| + |b|

2.12 Satz

|a/b| = |a| / |b|, falls $b \neq 0$.

 $| |a|-|b| | \le |a-b|$, $|a+b| \le |a|+|b|$

Beweis: (1) |1/b|=1/|b| Spezialfall. (2) $a=(a-b)+b=>|a|\le|a-b|+|a|=>|a|-|b|$

2.13 Definition

Intervall

§3 Vollständigkeitsaxiom

3.1 Definition

 $M \subset R$, $M \neq \emptyset$. M nach oben beschränkt, wenn ex. $b \in R$ mit $x \le b \ \forall \ x \in M$. b obere Schranke $M \subset R$, $M \neq \emptyset$. M nach unten beschränkt, wenn ex. $a \in R$ mit $a \le x \ \forall \ x \in M$. a untere Schranke

M beschränkt, wenn M nach oben und nach unten beschränkt.

Supremum sup M: kleinste obere Schranke b_0 , wenn $b_0 \le b$ für jede obere Schranke b Infimum inf M.

Supremum bzw. Infimum einer nach oben bzw. unten beschränkten Menge eindeutig bestimmt.

 $\sup M$ und $\inf M$ nicht notwendig in M. $\sup M \in M \implies \sup M = \max M$

3.2 Beispiele

...... Das Vollständigkeitsaxiom

A13: Vollständigkeit. Jede nichtleere, nach oben beschränkte Menge reeller Zahlen besitzt eine kleinste obere Schranke

Durch (A1)-(A13) wird R bis auf Isomorphie eindeutig charakterisiert.

3.3 Satz

Jede nichtleere, nach unten beschränkte Menge reeller Zahlen besitzt eine größte untere Schranke.

Beweis: Spiegelung an 0.

3.4 Satz

 b_0 Supremum von M <=> $x \le b$ und $\forall \epsilon > 0 \exists x \in M \text{ mit } b_0 - \epsilon < x$ (x zwischen b- ϵ und b_0)

Beweis: =>: klar. Indirekt, b- ε neue obere Schranke

<=: klar. Indirekt: b auch sup, b < b₀

3.5 Satz

Analogon für Infimum

Analysis I Seite 3 von 27

3.6	Satz
	$\forall \ a \ge 0 \ \exists \ genau \ ein \ x \ge 0 \ mit \ x^2 = a.$
	M:={ $y^2 \le a, y \ge 0$ }. M nicht leer, da $0^2 = 0 \le a$.
	M nach oben beschränkt => $\exists x := \sup M$. Es ist $0 \le x$, da $0 \in M$.
	z.Z.: Dieses x erfüllt Gleichung
3.7	
	In Q gilt das Vollständigkeitsaxiom nicht. M:= $\{y \mid y^2 \le 2, 0 \le y \}$
	Beweis: Indirekt: Ann. $x = m/n = \sup M$. m, n teilerfremd. => $x^2 = m^2/n^2 = 2 \implies m^2 = 2n^2 \implies m^2$ gerade => m gerade => $m = 2p \implies m^2 = 4p^2 = 2n^2 \implies 2p^2 = n^2 \implies n^2$ gerade => n gerade. => 2
	gerade => in gerade => in= $2p$ => in = $4p$ = $2n$ => $2p$ = n => in gerade => in gerade. => $2p$ teilt m und n => Widerspruch!
• • • • • • • • • • • • • • • • • • • •	•
••••••	Zwischen zwei rationalen Zahlen beliebig viele irrationale.
	$c_k := a + (b-a)/(k \cdot \sqrt{2}).$ $a < c_k < b.$ $c_k \notin Q$, sonst $\sqrt{2} = (b-a)/k(c_k - a) \in Q$
3.8	
3.8	Satz $M \subset \mathbb{N} \subset \mathbb{R}. \Rightarrow \sup M \leq \sup \mathbb{N} \text{ bzw. inf } \mathbb{N} \leq \inf M$
2.0	• •
3.9	sup(A+B) = sup(A) + sup(B)
	$\sup(A+B) = \sup A$
84	Vollständige Induktion
	Satz des Archimedes
7.1	N nicht nach oben beschränkt, d.h. zu jeder reellen Zahl ∃ eine größere, natürliche Zahl.
	Beweis: Indirekt: N nach oben beschränkt => \exists sup => \exists n mit b_0 -1 < n => b_0 < n+1 \in N
4.2	
4.2	
	Zu a, b \in R ⁺ \exists m \in N mit m·a>b. Beweis: Indirekt: m·a \leq b \forall m => m \leq b/a obere Schranke.
	Zu $\varepsilon > 0 \ \exists \ m \in \mathbb{N}$ mit $1/m < \varepsilon$. Dann auch $1/n < \varepsilon \ \forall$ n>m. Bew: Ind, b:=1: $m \cdot a \le 1 => m \le 1/a$
	Beweis durch Vollständige Induktion
4.4	•
	1+2+3++n = n(n+1)/2
4.5	Definition (Rekursiv)
	Endliche Summe, Endliches Produkt
4.6	Regeln für Summenzeichen
	Indexverschiebung, Allgemeines Distributivitätsgesetz, Verallgemeinerte
	Dreiecksungleichung
4.7	Rechengesetze für Potenzen
48	Bernoullische Ungleichung
4.0	$x > -1$, $n \in \mathbb{N}$. $(1+x)^n \ge 1+nx$
4.9	
4.9	Binominalkoeffizienten: (a 0):=1, (a $k+1$):= (a k) (a- k)/($k+1$)
	(a k) = $a! / ((a-k)! k!)$
4.10	
	(a k-1) + (a k) = (a+1 k)
4.11	Binomischer Lehrsatz

Analysis I Seite 4 von 27

4.12 Satz und Definition

 $(a+n)^n = \sum (n k) a^{n-k}b^k$

Genau eine Lösung von x^n =a

∆na-l

4.13 Definition
Potenzen mit rationalem Exponenten
4.14 Potenzregeln
4.15 Satz

"Q liegt dicht in R": a, b \in R. => \exists r \in Q mit a < r < b a < m/n < b <=> na < m < nb. b-a >0 => Eudoxos => \exists n mit n(b-a)=nb-na > 1 => \exists m nach Vorgabe, anschaulich klar, da Differenz nb-na > 1.

Analysis I Seite 5 von 27

Kapitel II. Funktionen

<i>§5</i>	Der Funktionenbegriff	
5.1	Definition Abbildung, Definitionsbereich, Abbildungsvorschrift, Wertebereich, Gleichheit	
5.2	Beispiele Dirichletsche Funktion (1 auf Q, 0 sonst)	
5.3	Definition Bildmenge, Urbildmenge	
5.4	Definition Geordnetes Paar, Kartesisches Produkt, Graph = $\{(x,f(x))\}$	
	Injektiv $s\neq t \Rightarrow f(s)\neq f(t)$ Surjektiv $f(X)=Y$	
5.6	-	
5.7	Umkehrfunktion einer bijektiven Funktion, Inverse Funktion	
5.8	•	
5.10	Definition Kompositum "g nach f", g o f	
5.11	Beschränktheit von $f(X)$. sup $f(x)$ über alle x aus $X := \sup f(X)$	
5.12	[Streng] [monoton] [wachsend / fallend]	
5.13	Bemerkungen Konstante Funktion ist monoton. Streng monotone Funktion ist injektiv, Umkehrfunktion ebenfalls streng monoton	
5.14	Definition Folge in Y	
5.15	Definition f+g, f · g, af punktweise erklärt. $ f (x) := f(x) $, $f^*(x) = \{ f(x), falls f(x) > 0; 0, falls f(x) < 0) \}$, $f^*(x)$. $=> f = f^* - f$, $ f = f^* + f^-$, $f^* = (f + f)/2$, $f^- = (f - f)/2$ (max(f,g))(x) := max(f(x), g(x))	
§6	Polynome	
6.1	Definition $p(x) = a_0 + a_1 x + a_2 x^2 + + a_n x^n$ heißt Polynom. Nullstelle, Grad des Polynoms, Abdividieren von Linearfaktoren	

Analysis I Seite 6 von 27

Stimmen Polynome vom Grad n an n+1 verschiedenen Stellen überein, so sind sie identisch.

Polynom vom Grad n > 0 höchstens n verschiedene Nullstellen

6.2 Satz

6.3 Satz "Identitätssatz für Polynome"

Ana-I

6.4 Folgerung

Normalform eines Polynoms, Grad eindeutig bestimmt.

Bei Linearfaktorzerlegung Vielfachheiten υ_{k} eindeutig bestimmt.

Koeffizientenvergleich möglich.

6.5 Satz

Polynom unbeschränkt, für große x das Vorzeichen durch a_n bestimmt, Nullstellen im Intervall $(-2(|a_0|+...+|a_n|)/|a_n|, \ 2(|a_0|+...+|a_n|)/|a_n|)$

Analysis I Seite 7 von 27

Kapitel III. Grenzwerte von Zahlenfolgen

§7	Grenzwertbegriff
7.1	Definition
	Folge $(a_n)_{n\in\mathbb{N}}$ konvergent gegen a $<=> \forall \ \epsilon>0 \ \exists \ n_0=n_0(\epsilon), \ a_n-a $
	In jeder U_{ϵ} liegen fast alle Folgenglieder (bis auf endlich viele Ausnahmen)
	Beispiele: $\lim_{n \to \infty} 1/n = 0$ (Eudoxos),
	$^{n}\sqrt{n}$ > 1, (Beweis: Abschätzen nach unten durch 1, Neue Folge $x_n := ^{n}\sqrt{n}$ -1. Nach n auflö-
- 4	sen, Binominal-Koeffs von k=0 und k=2, => $x_n^2 \le 2/n$
7.2	Konvergente Folge besitzt genau einen Grenzwert
	Beweis: Indirekt, a, b Grenzwerte, ϵ :=la-bl/2, U _{\varepsilon} bilden, Schnitt leer.
7.3	
1.3	Jede konvergente Folge ist beschränkt
	Beweis: n ₀ bestimmen, davor nur endlich viele. Maximum.
	•
	Folge der Partialsummen der Reihe 1/k. Divergent, vgl. 9.9
7.4	Bemerkungen
	$ a_n$ -a < ϵ und $n \ge n_0$ auch möglich!
	Nicht-Konvergenz: "Ausnahme-Umgebung" U_{ϵ} : $\forall n_0 \exists n > n_0 \text{ mit an } \notin U_{\epsilon}$
7.5	
	Teilfolge: Streng monoton wachsende Abbildung der Indizes
7.6	-
7.7	
- 0	Jede Teilfolge einer konvergenten Folge konvergiert gegen gleichen Grenzwert.
7.8	Jede reelle Zahl ist Grenzwert einer Folge rationaler Zahlen. Folge kann monoton wach-
	send/fallend gewählt werden.
	Beweis: $\exists r_n \text{ mit } a + 1/(n+1) < r_n < a + 1/n$. (r_n) monoton fallend, $ r_n-a < 1/n$. => $\lim r_n = a$
§8	Rechnen mit konvergenten Folgen
8.1	Satz
0.12	(a) $a_n \le b_n => a \le b$. Beweis: Indirekt über ε -Umgebung
	(b) $a_n \le c_n \le b_n$, $\lim a_n = \lim b_n = a \implies \lim c_n = a$. Einschnürungssatz . Beweis: U_{ϵ}
8.2	Satz
	(a) $ a_n-a < \alpha_n$ Nullfolge => $\lim a_n = a$
	(b) $\lim a_n = a \Rightarrow \lim a_n = a $
	(c) $\lim a_n = a$, $ a_n \le \gamma \implies a \le \gamma$
8.3	
	Nullfolge · Beschränkte Folge = Nullfolge
0.4	Beweis: ε -Bedingung, $ a_n b_n \le \beta \varepsilon$
8.4	Satz (a) (b) konvergente Folgen -> (a, l, b) (a, b) (a, b) (a, b) honvergent (a, l, b) hei b, b, l=0
	(a_n) , (b_n) konvergente Folgen => $(a_n +- b_n)$, $(a_n \cdot b_n)$, $(c a_n)$ konvergent. (a_n / b_n) , bei b, $b_n !=0$ Beweis: (1) ε -Bedingung. (2) $(a_n \cdot b_n - a b) = (a_n - a)b_n + (b_n - b)a$
	(3) $\exists p \text{ mit } b /2 < b_n \ \forall n > p => 1/b_n - 1/b = (b-b_n)/b \cdot b_n \le 2/b^2 b_n - b $. Konstante mal
	Nullfolge => $\lim(1/b_n) = 1/b$. => $\lim(a_n \cdot 1/b_n) = a/b$

Analysis I Seite 8 von 27

Existenz aller Grenzwerte beachten!

§9 Vier Prinzipien der Konvergenztheorie 9.1 Monotonieprinzip (a_n) sei monoton wachsend/fallend. (a_n) nach oben/unten beschränkt => Konv. lim a_n =sup a_n Beweis: a:=sup $a_n => \exists n_0 \text{ mit } a-\varepsilon < a_{n0} => a-\varepsilon < a_n \le a \forall n>n_0 => Beh.$ 9.2 Definition Intervallschachtelung: $[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$, $\lim_{n \to \infty} (b_n - a_n) = 0$ 9.3 Prinzip der Intervallschachtelung Genau ein a als Grenzintervall. Beweis: Beschränkt durch $a_1, b_1 => Konvergenz gegen a, b => lim(<math>a_n - b_n$)=a - b = 0 => a = b9.4 Beispiel und Definition $e = \lim (1 + 1/n)^n = \lim (1 + 1/n)^{n+1} = 2.71828$ 9.5 Auswahlprinzip von Bolzano-Weierstrass Jede beschränkte Folge in R enthält konvergente Teilfolge Beweis: z.Z.: Enthält momotone Teilfolge, dann Monotonieprinzip. Gipfelstelle m: $a_n < a_m \forall n > m$ (a_n) hat unendlich viele Gipfelstellen $\Rightarrow m_1 < m_2 < ..., \Rightarrow a_{m1} > a_{m2} > ... \Rightarrow Beh.$ (a_n) hat endlich viele Gipfelstellen $\Rightarrow n_1 > \max$ aller Gipfelstellen $\Rightarrow n_1$ keine Gipfelstelle $\exists n_2 > n_1 \text{ mit } a_{n1} \le a_{n2} \Longrightarrow \text{Induktion}$ 9.6 Definition Folge (a_n) heißt Cauchy-Folge \iff $\forall \epsilon > 0 \exists n_0 = n_0(\epsilon)$ mit $|a_m - a_n| < \epsilon \forall m, n > n_0$ (CAUCHY-Bed.) 9.7 CAUCHYSCHES Konvergenzkriterium Folge in R konvergiert genau dann, wenn CAUCHY-Folge. $=>: |a_n-a| < ε/2 => |a_n-a_m| < |a_n-a| + |a_m-a| < ε$ $=>|a_{_{n}}|\leq \max\{\ |a_{_{1}}|,\ ...,\ |a_{_{n0\cdot 1}}|,\ 1+|a_{_{n0}}|\ \}\ =>Bolzano-Weierstrass =>(a_{_{n}})\ hat\ konvergente$ Teilfolge (a_{nk}) , sei $a := \lim a_{nk}$. z.Z. $\lim a_n = a$. $\exists n_0, N > n_0 \text{ mit } |a_m - a_n| < \varepsilon/2 \quad \forall m, n > n_0, |a_N - a| < \varepsilon/2$ $=> |a_m - a| = |(a_m - a_N) + (a_N - a)| \le |a_m - a_N| + |a_N - a| < \varepsilon$ 9.8 Bemerkung Ohne Kenntnis des Grenzwertes sind mit 9.1 und 9.7 Konvergenzaussagen möglich! Nicht-Konvergenz: Ausnahme-ε bei Cauchy 9.9 Beispiele Reihe 1/k. ε :=1/2, m:=2n. Reihe $(-1)^{k-1} \cdot 1/k$ konvergent. $a_{n+k} - a_n = (-1)^n [1/(n+1) - 1/(n+2) + ...]$. Positive zusammenfassen \Rightarrow >0. Negative zusammenfassen \Rightarrow <1/(n+1) \Rightarrow Beh.

Intermezzo Allgemeine Potenz und Logarithmus $r \in R$. $a^r := \lim a^{r\,n}, \ r_n \in Q, \ \lim r_n = r$

§10 Häufungswerte von Folgen

10.1 Definition

Häufungswert: $\forall \ \epsilon > 0$, n $\exists \ m > n$ mit $a_m \in U_{\epsilon}(a)$ [In jeder ϵ -Umgebung unendlich viele FG]

10.2 Beispiel

Grenzwert von Teilfolgen ist Häufungswert

Analysis I Seite 9 von 27

10.3 Satz

Häufungswert <=> Grenzwert geeigneter Teilfolge

Beweis: =>: Indizes bestimmen mit $a_{nk} \in U_{1/k}(a)$ => $\lim a_{nk} = a$

10.4 Satz ,,Bolzano-Weierstrass"

Jede beschränkte Folge besitzt mindestens einen Häufungswert.

Beweis: Auswahlprinzip "Bolzano-Weierstrass" und Satz 10.3

..... Beispiel

Cauchysches Diagonalverfahren

Q abzählbar, alle Werte aus R Häufungswerte

10.5 Satz und Definition

Beschränkte Folge besitzt größten und kleinsten Häufungswert, lim sup, lim inf. Grenzwerte aller konvergenten Teilfolgen liegen dazwischen. Bei lim inf: Links von α + ϵ unendlich viele, links von α - ϵ nur endlich viele Folgenglieder.

Beweis: (iii) Indirekt: Links unendlich viele $\Rightarrow \exists$ Teilfolge, beschränkt \Rightarrow Konvergent \Rightarrow HW

10.6 Satz

Folge konvergiert <=> beschränkt und besitzt nur einen Häufungswert

Beweis: $\lim \inf = \lim = \lim \sup$

10.7 Satz

Beschränkte Folge. $\alpha_n := \inf \{ a_k \mid k \ge n \}, \ \beta_n := \sup \{ a_k \mid k \ge n \}.$ Monoton, überschneiden sich nicht. (α_n) und (β_n) konvergieren, $\lim\inf a_n = \lim \alpha_n = \sup \alpha_n$.

Beweis: (iii) Monotonieprinzip => $\alpha = \lim_{n \to \infty} \alpha_n = \sup_{n \to \infty} \alpha_n$. $\alpha = \lim_{n \to \infty} \inf_{n \to \infty} a_n$ durch ϵ -Bedg. 10.5

10.8 Beispiel

 $a_n := (-1)^n + 1/n$. $(\alpha_n) = (-1, -1, -1, ...) -> -1$, $(\beta_n) = (3/2, 3/2, 5/4, 5/4, 7/6, ...) -> 1$

§11 Bestimmte Divergenz

11.1 Definition

Folge [bestimmt] divergent gegen ∞ , $-\infty <=> \forall G \in \mathbb{R}^+ \exists n_0 \text{ mit } a_n > G, a_n < -G \forall n > n_0$

- 11.2 Beispiele
- 11.3 Satz
 - (a) $\lim_{n \to \infty} a_n = 0 <=> \lim_{n \to \infty} 1/|a_n| = \infty$
 - (b) Kurz: $\infty + c = \infty$, $\infty + \infty = \infty$, $\alpha \cdot \infty = sign(\alpha) \cdot \infty$, $\infty \cdot \infty = \infty$, $\alpha / \infty = 0$ Unbestimmte Ausdrücke: $0 \cdot \infty$, $\infty - \infty$

Beweis: (a) Nach | $a_n - 0$ | < 1/G

11.4 Definition

 $\limsup a_n := \sup a_n := \infty$, falls (a_n) nicht nach oben beschränkt

Analysis I Seite 10 von 27

Kapitel IV: Reihen

§12 Konvergente Reihen

12.1 Definition

 $s_n := \sum_{k=0}^{n} a_k$ n-te Partialsumme

 $(s_n)_{n\in\mathbb{N}}$ (unendliche) Reihe mit der Gliederfolge (a_n) , Bezeichnung: $\sum_{k=0}^{\infty} a_k$

Reihe $\sum_{k=0}^{\infty} a_k$ konvergent <=> Folge der Partialsummen konvergent. lim s_n =:s Wert der Reihe

Schreibweise: $\sum_{k=0}^{\infty} a_k = s$ [Nur, wenn Reihe konvergent!]

..... Beispiele

Geometrische Reihe: $a_n := q^n, \, n \ge 0.$ $s_n = \{ \sum_{k=0}^n q^k = (1-q^{n+1})/(1-q) \, n+1 \, (\text{bei } q=1) \}$ Konvergenz für $|q| < 1: \sum_{k=0}^{\infty} q^k = 1/(1-q).$ Divergenz für $|q| \ge 1$

Harmonische Reihe: $\Sigma_{k=1}^{\infty}$ 1/k divergent

Teleskopsumme: $a_n := 1/n(n+1) = 1/n - 1/(n+1)$. $\sum_{k=0}^{n} (1/k - 1/(k+1)) = 1 - 1/(n+1)$. $\sum_{k=0}^{\infty} a_n = 1$

12.2 CAUCHYSCHES Konvergenzkriterium

Reihe konvergent \iff $\forall \ \epsilon > 0 \ \exists \ n_0 = n_0(\epsilon), \ |\sum_{k=n+1}^{n+p} a_k| < \epsilon \quad \forall \ n \ge n_0, \ \forall \ p$ Beweis: \iff (s_n) Cauchy-Folge

12.3 Monotoniekriterium

Reihe mit nichtnegativen Gliedern konvergiert <=> Folge der Partialsummen beschränkt

..... Beispiel

 $\sum_{k=1}^{\infty} 1/k^2$ konv. $\sum_{k=1}^{n} 1/k^2 \le 1 + \sum_{k=2}^{n} 1/k(k-1) = 1 + \sum_{k=1}^{n-1} 1/k(k+1) = 1 + 1 - 1/n -> \pi^2/6 < 2$

12.4 Satz

 $\Sigma_{k=0}^{\infty} a_k$ konvergente Reihe. $r_n := \Sigma_{k=n+1}^{\infty} a_k$ Reste der Reihe. \Rightarrow (a_n) und (r_n) Nullfolgen Beweis: \Rightarrow : Im Cauchy-Konvergenzkriterium p=1.

Existenz von r_n: Indexverschiebung. Hier Cauchy-Konvergenzkrit.

12.5 Satz

Konvergente Reihen gliedweise addierbar oder mit Konstante multiplizierbar.

12.6 Konvergenzkriterium von Dirichlet

 $\Sigma_{k=0}^{\infty} a_k$ Reihe mit beschränkten Partialsummen (Nicht notwenig konvergent!) und (b_n) monoton fallende Nullfolge. => $\Sigma_{k=0}^{\infty} a_k$ konvergent

Beweis: Zu umständlich!

12.7 Konvergenzsatz von Leibniz für alternierende Reihen

 (b_n) monoton fallende Nullfolge. => $\sum_{k=0}^{\infty} (-1)^k b_k$.

Gerade Glieder der Partialsummenfolge: Monoton fallend.

Ungerade Glieder: Monoton wachsend.

12.8 Klammersatz

In konvergenten Reihen Glieder klammerbar, ohne Konvergenzverhalten zu ändern.

Beweis: Folge der Partialsummen der neuen Reihe ist Teilfolge der alten.

§13 Absolut konvergente Reihen

13.1 Definition

 $\sum_{k=0}^{\infty} a_k$ absolut konvergent $\iff \sum_{k=0}^{\infty} |a_k|$ konvergent

Analysis I Seite 11 von 27

13.2 Satz

Ansage

Absolut konvergente Reihe erst recht konvergent, es gilt verallgemeinerte Dreiecksungleichung

 $\begin{array}{lll} \text{Beweis: Cauchy-Krit.: } \Sigma_{k=n+1}^{& n+p} |a_k| < \epsilon & \forall \ n > n_0. \ => \ |\Sigma_{k=n+1}^{& n+p} a_k| \le \Sigma_{k=n+1}^{& n+p} |a_k| < \epsilon \ => \text{Cauchy DU: } |\lim \Sigma_{k=0}^{& n} a_k| \le \lim |\Sigma_{k=0}^{& n} a_k| \le \lim \Sigma_{k=0}^{& n} |a_k| \le 1 \end{array}$

13.3 Satz

Reihe absolut konvergent \iff Folge ($\sum_{k=0}^{n} |a_k|$) beschränkt

Beweis: Monotonieprinzip

13.4 Majoranten-Minoranten-Kriterium

 $\begin{array}{ll} |a_k| \leq c_k \text{ f.ü. mit } \Sigma c_k \text{ konvergent } => \Sigma a_k \text{ absolut konvergent.} & \text{Konvergente Majorante} \\ 0 \leq d_k \leq a_k \text{ f.ü. mit } \Sigma d_k \text{ divergent} & => \Sigma a_k \text{ divergent} & \text{Divergente Minorante} \\ \text{Beweis: (i) Sei } |a_k| \leq c_k \ \forall \ k \geq n_1. => \sum_{k=n+1}^{n+p} |a_k| \leq \sum_{k=n+1}^{n+p} c_k \leq \sum_{k=n+1}^{\infty} c_k \rightarrow 0 \ \forall \ n \geq n1, \ p \\ \text{(ii) folgt aus (i): Wäre } \Sigma a_k \text{ konvergent, so auch } \Sigma d_k \end{array}$

..... Beispiele

 $\Sigma 1/k_p^p$, $p \ge 2$ konvergent, $\Sigma 1/k^2$ konvergente Majorante

 $\Sigma 1/\sqrt{k}$ divergent, $\Sigma 1/k$ divergente Minorante

 Σa_n Reihe, $\beta := \lim \sup_{n \to \infty} \sqrt{|a_n|}$.

13.5 Wurzelkriterium

 β < 1 => Absolute Konvergenz

 $\beta > 1 \Rightarrow \text{Divergenz}$

 $\beta = 1 \implies$ Keine Information

Beweis: $\beta < 1$. Wähle ϵ mit $\beta + \epsilon < 1$. => $|a_n|^{1/n} > \beta + \epsilon$ nur für endlich viele n, ,,<" $\forall n > n_1$

 $=> |a_n| \le (\beta + \varepsilon)^n =>$ geometrische Reihe majorisiert => Absolute Konvergenz.

 $\beta > 1$. ε mit $\beta - \varepsilon > 1$. => $|a_n| > (\beta - \varepsilon)^n > 1$ => (a_n) keine Nullfolge => Divergenz

 $\beta = 1$. Gegenbeispiele: $\Sigma 1/n$ divergent, $\Sigma 1/n^2$ konvergent

13.6 Quotientenkriterium

 Σ an mit $a_n \neq 0 \ \forall n$.

 $\limsup |a_{n+1}/a_n| < 1 \implies Absolute Konvergenz$

 $\lim \inf |a_{n+1}/a_n| > 1 => \text{Divergenz}$

 $\liminf |a_{n+1}/a_n| \le 1 \le \limsup |a_{n+1}/a_n| => \text{ Keine Aussage}$

Beweis: $\beta := \limsup \sqrt[n]{|a_n|} = \lim \inf |a_{n+1}/a_n| \le \beta \le \limsup |a_{n+1}/a_n|$, dann Wurzelkrit. Ungleichung: Große Übung 23.

13.7 Bemerkungen

Wurzelkriterium leistungsfähiger als Quotientenkriterium.

13.8 Beispiele

 $e = \sum_{k=0}^{\infty} 1/k! = lim (1 + 1/n)^n$

13.9 Bemerkungen zum Wurzel- und Quotientenkriterium

(a) $\exists \ 0 < q < 1 \ \text{mit} \ \ ^n \sqrt{|a_n|} \le q < 1 \ \ \forall \ n > n_0 = > \text{Absolute Konvergenz}. \ \ \Sigma q^n \text{ konvergente Majorante}$

(b) $\sqrt[n]{|a_n|} > 1 \quad \forall n > n_0 = \text{Divergenz, denn } (a_n) \text{ keine Nullfolge}$

(c) 0 < q < 1, $|a_{n+1}/a_n| < q \forall n > n_0 => Absolute Konvergenz$

(d) $|a_{n+1}/a_n| \ge 1 \quad \forall n > n_0 => Divergenz, denn <math>(a_n)$ keine Nullfolge, $(|a_n|)$ monoton wachsend ab bestimmter Stelle

Analysis I Seite 12 von 27

13.10 CAUCHYSCHER Verdichtungssatz

(a_n) nichtnegative monoton fallende Folge.

 $\sum a_n$ konvergent <=> ,,verdichtete Reihe" $\sum 2^n a_{2^{n}n}$ konvergent

Beweis: =>: Glieder ausschreiben und in 1, 1, 2, 4, 8, ...-er-Gruppen zusammenfassen, durch das letzte Glied jeder Gruppe nach unten abschätzen

<=: Zusammenfassen, durch erstes Glied jeder Gruppe nach oben abschätzen

13.11 Beispiele

 $\Sigma 1/n^{\alpha}$ für $\alpha > 1$ konvergent, $\alpha \le 1$ divergent.

13.12 Definition "Umordnung"

Umordnung einer Reihe: Indizes der Glieder durch Bijektion φ umordnen

13.13 Beispiel

13.14 Kleiner Umordnungssatz

Umordnung ändert an Konvergenz und Wert einer absolut konvergenten Reihe nichts.

Beweis: Spezialfall $a_k \ge 0$. $\sum_{k=1}^{p} a_{\phi(k)} \le \sum_{k=1}^{m(p)} a_k \le \sum_{k=1}^{\infty} a_k$, da $\{\phi(1), ..., \phi(p)\} \subset \{1,...,m(p)\}$ Monotoniekriterium => Konvergenz. Umgekehrt φ⁻¹ Umordnung => Gleicher Wert $a_k = (a_k + |a_k|) - |a_k|$, positiv. $\sum a_k = \sum (a_k + |a_k|) - \sum |a_k|$, konvergent nach Majorantenk. => Beh.

13.15 Definition "Totale Umordnung"

N in endlich viele oder abzählbar viele disjunkte Teilmengen S₁, S₂,... zerlegen.

Für abzählbar unendliche Teilmengen: Abzählung ϕ_i bestimmen.

 $b_i := \{ \sum_{k \in S_i} a_k [S_i \text{ endlich}], \sum_{k=1}^{\infty} a_{\phi_i(k)} [S_i \text{ unendlich}], 0 [j>p = Anzahl der Teilmengen] \}$ $\sum_{i=1}^{\infty} b_i$ totale Umordnung von $\sum a_k$

Schreibweise: Reihe absolut konvergent, S abzählbar unendlich.

=> b = $\sum_{k \in S} a_k$, b unabh. von spez. Wahl der Abzählung φ

13.16 Großer Umordnungssatz

Totale Umordnung ändert an Konvergenz und Wert einer absolut konvergenten Reihe nichts. Ist $a_{k} \ge 0$ und Σa_{k} divergent, so auch jede Umordnung.

Beweis: Komplizierte ε-Abschätzungen

13.17 Definition

Doppelfolge: Abbildung c: $N_0 \times N_0$ (i, j) $\rightarrow c_{i,i}$

φ bijektive Abzählung z.B. nach Cauchyschem Diagonalverfahren.

13.18 Satz

(c_{i,i}) Doppelfolge.

 \exists Abzählung ϕ , $\Sigma c_{\sigma(n)}$ absolut konvergiert => \forall Abzählungen abs. konv. mit gleichem Wert Absolute Konvergenz d. Doppelreihe: \exists Abzählung, $\Sigma c_{\omega(n)}$ absolut konvergent

$$\begin{split} \text{Wert der Doppelreihe: } \Sigma_{j,k=0}^{} \, \, \, ^{\circ} c_{j,k}^{} \; := \; \Sigma_{n=0}^{} \, \, ^{\circ} c_{\phi(n)}^{} \\ \text{Doppelreihe abs. konvergent } \; => \; \Sigma_{j,k=0}^{} \, \, ^{\circ} c_{j,k}^{} \; = \; \Sigma_{j=0}^{} \, \, ^{\circ} (\Sigma_{k=0}^{} \, \, ^{\circ} c_{j,k}^{}) = \Sigma_{k=0}^{} \, \, ^{\circ} (\Sigma_{j=0}^{} \, \, ^{\circ} c_{j,k}^{}), \end{split}$$

alle Reihen abs. konv., "Iterierte Reihen der Doppelfolge"

Beweis: (1) aus kleinem Umordnungssatz, (2) aus großem Umordnungssatz

13.19 CAUCHYSCHEr Doppelreihensatz

 $\text{Doppelreihe absolut konvergent} \ \mathrel{<=>} \ \ \Sigma_{_{j=0}}^{^{\infty}} \ (\Sigma_{_{k=0}}^{^{\infty}} \ |c_{_{i,k}}|) < \infty < => \ \ \Sigma_{_{k=0}}^{^{\infty}} \ (\Sigma_{_{j=0}}^{^{\infty}} \ |c_{_{i,k}}|) < \infty < => \ \ \Sigma_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < >> \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < => \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < >> \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < >> \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > < \infty < >> \ \ C_{_{k=0}}^{^{\infty}} \ |c_{_{j,k}}| > <$ Beweis: Aus großem Umordnungssatz

13.20 Satz

Reihen Σa_i und Σb_i **abs.** konv. $\Rightarrow \Sigma a_i b_k = (\Sigma a_i)(\Sigma b_k)$ **abs.** konv.

Beweis: $\Sigma(\Sigma |a_ib_k|) = \Sigma(|a_i| \cdot \Sigma |b_k|) = (\Sigma |a_i|)(\Sigma |b_k|)$

nach 12.5 (Gliedweise multiplizierbar) und 13.19 (CAUCHYScher Doppelreihensatz) Ohne Beträge => Werte gleich.

13.21 CAUCHY-Produkt von Reihen

Doppelfolge nach Diagonalen abzählen und klammern.

$$\Sigma a_i b_k = \Sigma (\Sigma_{i=0}^n a_i b_{n-i}) = a_0 b_0 + (a_0 b_1 + a_1 b_0) + ...$$

Analysis I Seite 13 von 27

13.22 Beispiele

 $(\Sigma q^{\scriptscriptstyle k})^{\scriptscriptstyle 2}=1/(1\hbox{-} q)^{\scriptscriptstyle 2}=\Sigma(n\hbox{+} 1)q^{\scriptscriptstyle n}$

Iterierte Reihen nicht notwendig gleichen Wert, nur bei Beträgen (1 bzw. -1 in Nebendiag.) Cauchy-Produkt divergent, obwohl beide Reihen einzeln nach Leibniz konvergieren.

$$\Sigma_{i,k=2}^{^{\infty}} 1/j^k = 1$$

..... Lineare Struktur der Analysis

 R^{N} = Vektorraum aller Folgen. Konvergente F. und Nullf. sind lin. Unterraum. lim ist lineare Abb.

Analysis I Seite 14 von 27

Kapitel V: Grenzwerte von Funktionen und Stetigkeit

§14 Topologische Grundbegriffe **14.1** Definition $U_{\epsilon}(x) := (x - \epsilon, x + \epsilon) \epsilon$ -Umgebung $U_{\varepsilon}(x) := U_{\varepsilon}(x) \setminus \{x\}$ punktierte ε -Umgebung x innerer Punkt von A $\iff \exists \varepsilon > 0 \text{ mit } U_{\varepsilon}(x) \subset A$ $A^{\circ} := \{ x \in R \mid x \text{ ist innerer Punkt von } A \}, \text{ Inneres, Kern}$ A offene Menge \iff Jeder Punkt von A ist innerer Punkt \iff A = A° A abgeschlossene Menge \iff Komplement von A $(R \setminus A)$ offene Menge x Häufungspunkt von A <=> $\forall \varepsilon > 0$ $^{\circ}U_{\varepsilon}(x) \cap A \neq \emptyset$ <=> $x \in H(A)$ $^{\sim}$ A := A \cup H(A) Abgeschlossene Hülle von A x Isolierter Punkt $\iff \exists \delta > 0 \text{ mit } U_{\delta}(x) \cap A = \{x\}$ **14.2** Beispiele Intervall (a, b) offene Menge, [a, b] abgeschlossene Menge $\{ 1/n \}$. $A^{\circ}=\emptyset$, $H(A)=\{0\}$, A weder offen noch abgeschlossen, jeder Punkt isolierter Punkt H(Q)=R14.3 Satz A abgeschlossen \iff H(A) \subset A \iff $^{\sim}$ A = A Beweis: (1) A abg. => R\A offen => $x \in R\setminus A$, $U_{\varepsilon}(x) \subset R\setminus A => U_{\varepsilon}(x) \cap A = \emptyset$. => $x \notin H(A)$ (2) $H(A) \subset A \implies {}^{\sim}A = A \cup H(A) = A$ (3) $^{\sim}A = A$, $x \in \mathbb{R} \setminus A = x \notin ^{\sim}A = A \cup H(A) = x \notin A$, $x \notin H(A) = \exists \epsilon, U_{\epsilon}(x) \cap A = \emptyset$ 14.4 Satz $x \in H(A) \implies \exists Folge(x_n) mit x_n \in A \setminus \{x\}, \lim x_n = x$ Beweis: Induktion zur Konstruktion von (x_n) . Zu $\varepsilon=1$ $\exists x_1 \in {}^{\circ}U_{\varepsilon}(x) \cap A$. Induktion, dabei $\varepsilon = \min \{ 1/n, |x-x_1|, |x-x_2| ... \}$. $x_n \in {}^{\circ}U_{\varepsilon}(x) \cap A. => x_i$ paarweise verschieden, $\lim_{n \to \infty} x_n = x, da |x_n - x| < 1/n.$ Bemerkung => In jeder ε-Umgebung eines Häufungspunktes unendlich viele Elemente von A 14.5 Satz ,,Bolzano-Weierstrass" Jede unendliche beschränkte Teilmenge A von R besitzt mindestens einen Häufungspunkt. Beweis: A unendlich => \exists injektive Abbildung φ : N \rightarrow A. φ (n)=: x_n . (x_n) beschränkt => Bolzano-Weierstrass => (x_n) mindestens einen Häufungswert => $x_n \in U_{\epsilon}(x) \forall n > n_0$ 14.6 Satz Abgeschlossene Menge nach oben/unten beschränkt => besitzt Maximum/Minimum [Supremum/Infimum liegt aufgrund d. Abgeschlossenheit in Menge] Beweis: Abgeschlossen $\Rightarrow \exists$ s:=supA. Ann.: s \notin A $\Rightarrow \exists$ streng monoton wachsende Folge gegen Supremum, $(x_n) \in A$, $\lim x_n = s$. $=> s \in H(A) \subset A = A => Widerspruch$

§15 Grenzwerte von Funktionen

15.1 Definition

f: $S \rightarrow R$, $x_0 \in H(S)$, $S \neq \emptyset$

f an Stelle x_0 Grenzwert $<=>\exists L \in \mathbf{R}, \forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0, |f(x)-L| < \varepsilon \forall x \in {}^\circ\mathbf{U}_\delta(x_0) \cap \mathbf{S}$ Schreibweise: $\lim_{x \to x_0} f(x) = L$, $f(x) \to L$ für $x \to x_0$

Analysis I Seite 15 von 27

••••		Bemerkungen Grenzwert, falls existiert, eindeutig bestimmt. Indirekt: Zwei L annehmen, mit $\epsilon/2$ abschät-
		zen.
15 2	• • • • • • • • • • • • • • • • • • • •	Bleibt unberücksichtigt, ob und wie f an der Stelle x_0 definiert
13.2	•••••	T \subset S \subset R. $x_0 \in$ H(T). $\exists \lim_{x \to x0, x \in S} f(x) => \exists \lim_{x \to x0, x \in T} f(x)$ und beide gleich. Beweis: Folgt unmittelbar aus Definition des Grenzwertes
15.3		
		Rechts-/Linksseitiger Grenzwert
15.4	•••••	Satz "Folgenkriterium" f an Stelle x_0 Grenzwert <=> Für jede gegen x_0 konvergente Folge (x_n) , $x_n \in S \setminus \{x_0\}$, ist auch $(f(x_n))$ konvergent
		$\lim_{n \to \infty} f(x) = L \Rightarrow \text{ für jede Folge } x_n \to x_0 \text{ gilt } \lim_{n \to \infty} f(x_n) = L$ Beweis: Lang.
15.5		Konvergenzkriterium von Cauchy
		$\exists \lim f(x) <=> \forall \epsilon > 0 \ \exists \delta = \delta(\epsilon), \ f(x)-f(y) < \epsilon \ \forall x,y \in {^{^{\circ}}\!U_{\delta}}(x_0) \cap S$
		Beweis: =>: $ f(z)-L < \varepsilon/2$. => $ f(x)-f(y) \le f(x)-L + L-f(y) < \varepsilon$
4= -		<=: Bel. Folge (x_n) , $x_n \in S\setminus \{x_0\}$, $\lim x_n = x_0$. => bel. ε => δ aus Konvergenz der Folge => $(f(x_n))$ Cauchy-Folge => Folgenkriterium
15.6	•••••	Satz Linearität von " \lim ": $\lim(f+g)(x)$, $\lim(f\cdot g)(x)$, $\lim(\alpha f)(x)$, $\lim(1/f)(x)$, Ordnungserhaltung
••••		Für jedes Polynom p und jede rationale Funktion $r=p/q$ gilt: $\lim_{x \to \infty} p(x) = p(x_0)$, $\lim_{x \to \infty} r(x) = r(x_0)$
15.7		Definition $f \text{ für } x \to \infty <=> \ \forall \ \epsilon > 0 \ \exists \ x_0 = x_0(\epsilon) \ f(x)-L < \epsilon \ \forall \ x \ge x_0, \ x \in S$
15.8		Bemerkungen
		Grenzwert eindeutig bestimmt
		Folgenkriterium und Cauchy gelten auch: $\exists \lim_{x\to\infty} f(x) \iff \text{F\"ur jede Folge } (x_n), \text{ die bestimmt gegen } \infty \text{ divergiert, ist die Folge } (f(x_n)) \\ \text{konvergent} \iff \forall \ \epsilon > 0 \ \exists \ x_0, \ f(x)-f(y) < \epsilon \ \forall \ x,y \ge x_0, \ x,y \in S \\ \text{Grenzwertregeln weiter g\"ultig.}$
15.9		
10.5		f divergiert bestimmt gegen ∞ für $x \to x_0 <=> \forall G>0 \exists \delta = \delta(G)>0, f(x) \ge G \forall x \in {}^{\circ}U_{\delta}(x_0) \cap S$
		f divergiert bestimmt gegen ∞ für $x \to \infty \iff \forall G > 0 \exists x_0 \ f(x) \ge G \ \forall x \ge x_0$
§16		Stetige Funktionen
16.1		Definition
		f stetig im Punkt $x_0 \iff \forall \ \epsilon > 0 \ \exists \ \delta = \delta(\epsilon) > 0, \ f(x) - f(x_0) < \epsilon \ \forall \ x \in U_\delta(x_0) \cap S$ f stetig auf $S \iff$ f in jedem Punkt aus S stetig. Beachte: f in jedem isolierten Punkt stetig.
16.2	• • • • • • • • • • • • • • • • • • • •	Beispiele
16.3	•••••	Folgenkriterium für Stetigkeit f stetig im Punk $x_0 <=>$ für jedegegen x_0 konvergente Folge (x_n) , $x_n \in S$, gilt:lim $f(x_n) = f(x_0)$
16.4	•••••	Satz αf , f+g, f·g, [f/g bei $g(x_0)\neq 0$] stetig.

Analysis I Seite 16 von 27

16.5 Satz

g o f stetig bei entsprechender einzelner Stetigkeit in x_0 und $f(x_0)$.

Beweis: Über Folgenkriterium

16.6 Beispiele

16.7 Satz

f in x_0 stetig. $f(x_0) > 0 \implies \exists \delta > 0$ mit $f(x) > 0 \forall x \in U_\delta(x_0) \cap S$, Analog für ,,<" Beweis: $\varepsilon := |f(x_0)|/2 . \implies \delta \implies f(x) = f(x_0) + (f(x) - f(x_0)) \ge f(x_0) - |f(x) - f(x_0)| > f(x_0)/2 > 0$

16.8 Definition

f rechtsseitig stetig im Punt $x_0 \ll \lim_{x \to x_0 +} f(x) = f(x_0)$

f linksseitig stetig im Punt $x_0 \ll \lim_{x \to x_0} f(x) = f(x_0)$

Beachte: f stetig <=> rechts- und linksseitig stetig.

Sprungstelle von f <=> rechts- und linksseitiger Grenzwert existent, aber ungleich

16.9 Zwischenwertsatz

€**

f auf [a,b] stetig.

- (a) f auf [a,b] beschränkt
- (b) M:=sup und m:=inf werden auf [a,b] angenommen
- (c) f([a,b]) = [m,M]

Beweis: (a) Indirekt. \forall $n \exists x_n \in [a,b]$, $|f(x_n)| > n$. Folge Beschränkt => Bolzano-Weierstrass => konvergente Teilfolge (x_{nk}) mit $\lim x_{nk} =: x_0 \in [a,b]$. => $|f(x_{nk})|$ konvergent => K, $|f(x_{nk})| < K$ => $n_k < |f(x_{nk})| \le K \ \forall \ k$ => (n_k) beschränkt => Widerspruch.

(b) Ann.: $M \notin [a,b]$. => f(x) < M. g:=1/(M-f(x)) stetig, nach (a) beschränkt. => $1/(M-f(x)) \le K$ => $f(x) \le M-1/K$ im Widerspruch zur Def. des Suppremums.

(c) ---

16.10 Bemerkungen

Stetiges Bild eines Intervalles wieder Intervall.

16.11 Folgerung

 $f(a) \cdot f(b) < 0$ (Vorzeichen verschieden!) => $\exists x_0 \in (a,b) \text{ mit } f(x_0) = 0.$

16.12 Satz "Stetigkeit der Umkehrfunktion"

f auf Intervall streng monoton wachsend/fallend. Dann ist Umkehrabbildung auf entsprechendem Definitionsbereich stetig.

Beachte: f selbst nicht notwendig stetig! Neuer Def-Bereich nicht notwendig Intervall! Beweis: ---

16.13 Beispiel

16.14 Satz

f auf Intervall injektiv und stetig => f streng monoton

Beweis: ---

16.15 Definition

 $C[a,b] = Menge aller stetigen Funktionen f:[a,b] \rightarrow R.$

Vektorraum

Analysis I Seite 17 von 27

Kapitel VI. Funktionenfolgen und -reihen

§17 Punktweise und gleichmäßige Konvergenz 17.1 Definition $n \to f_n$ Funktionenfolge. (f_n) . Funktionenfolge punktweise konvergent gegen Grenzfunktion f <=> für jedes x konvergiert Zahlenfolge $(f_n(x))$ gegen Grenzwert f(x). \iff $\lim_{n \to \infty} f_n(x) = f(x) \iff$ $\forall \ \epsilon > 0, \ \forall \ x \ \exists \ n_0 = n_0(\epsilon, x) \ \text{mit } |f_n(x) - f(x)| < \epsilon \ \forall n > n_0$ Grenzfunktion f eindeutig bestimmt. 17.2 Satz von Cauchy $f_n \to f \iff \forall \epsilon > 0 \ \forall x \ \exists n_0 = n_0(\epsilon, x), \ |f_n(x) - f_m(x)| < \epsilon \ \forall \ n, m \geq n_0 \ \text{Cauchysche Konvergenzbed}.$ Beweis: Für festes x direkt aus 9.7, CAUCHY-Bedingung für Folgen. 17.3 Beispiele Beachte: Punktweiser limes erhält Stetigkeit nicht unbedingt! 17.4 Definition Funktionenfolge gleichmäßig konvergent $<=> \forall \epsilon>0, \forall x \exists n_0=n_0(\epsilon) \text{ mit } |f_n(x)-f(x)|<\epsilon$ Beachte: n_0 unabhängig von x! ε -Schlauch. Glm-Konv. => Punktw. Konv. 17.5 Beispiele xⁿ nicht glm., nur punktweise konvergent. 17.6 Satz Funktionenfolge stetiger Fkt. glm. konvergent gegen f auf $S \Rightarrow f$ stetig auf SBeweis: (i) glm. Konv. => $|f(x)-f_{n0}(x)| < \varepsilon/3$. (ii) f_{n0} stetig => $|f_{n0}(x)-f_{n0}(x_0)| < \varepsilon/3$ $=> |f(x)-f(x_0)| \le |f(x)-f_{n0}(x)| + |f_{n0}(x)-f_{n0}(x_0)| + |f_{n0}(x_0)-f(x_0)| < \varepsilon$ 17.7 Bemerkungen Punktweise: $\lim_{n \to \infty} |f_n(x)-f(x)| = 0$. Gleichmäßig: $\lim_{n\to\infty} \sup_{x\in S} |f_n(x)-f(x)|=0$ Beweis: $|f_n(x)-f(x)| < \varepsilon \ \forall n > n0, \ \forall x \in S. \implies 0 \le \sup |f_n(x)-f(x)| = a_n < \varepsilon \ \forall n > n_0. \implies a_n \to 0$ 17.8 Definition $||f|| := \sup_{x \in S} |f(x)|$ Supremumsnorm (kurz: Norm) von f auf S. Beachte: $\lim_{n\to\infty} \sup_{x\in S} |f_n(x)-f(x)|=0 <=> \lim ||f_n-f|| =0$ 17.9 Satz "Norm-Gesetze" (1) $||f|| \ge 0$, ||f||=0 <=> f=0(2) $||cf|| = |c| \cdot ||f||$ (3) $||f+g|| \le ||f|| + ||g||$ (Dreiecksungleichung) (4) $\|fg\| \le \|f\| \cdot \|g\|$ $(5) \ | \ ||f|| - \ ||g|| \ | \le \ ||f-g|| \ \le \ ||f+g||$ Beweis: (1), (2) klar. (3), (4) über $|f(x)| \le ||f(x)||$, (5) aus (3) wie 2.12. 17.10 Satz Funktionenfolge konv. glm. gegen f \iff lim $||f_n-f|| = 0$ Beweis: =>: Siehe 17.7 <=: $\|f_n - f\|$ → 0, ε >0. => $\exists n_0$: $\|f_n - f\| < \varepsilon \ \forall n > n_0$. => $\|f_n(x) - f(x)\| \le \|f_n - f\| < \varepsilon \ \forall x \in S$ 17.11 Bemerkungen (f_n) konv. nicht glm. gegen $f \ll (\|f_n - f\|)$ keine Nullfolge $\ll \exists \epsilon_0 > 0, \|f_n - f\| > \epsilon_0 \forall n > n_0$ \iff $\exists \varepsilon_0 > 0, |f_n(x) - f(x_n)| > \varepsilon_0 \forall n > n_0, x_n \in S \text{ (unendlich viele Paare n, } x_n)$

Analysis I Seite 18 von 27

f beschränkt auf S, so auch fast alle f_n .

17.12 Satz "CAUCHY-Konvergenzbedingung bzgl. der Norm"

 \exists f mit lim $f_n = f$ **glm.** $<=> \forall \epsilon>0 \exists n_0=n_0(\epsilon), ||f_m-f_n||<\epsilon \forall m,n \geq n_0.$

Beweis: =>: $||f_n - f|| < \varepsilon/2$. => $||f_n - f_m|| \le ||f_n - f|| + ||f_n - f|| < \varepsilon$

 $<=: Sei \ (f_n) \ C \text{Auchy-Folge bzgl. d. Norm.} \Rightarrow (f_n(x)) \ CF \ \forall \ x \Rightarrow \exists \ lim \ f_n(x) =: f(x).$

 $|f_n(x)-f_m(x)| \le ||f_n-f_m|| < \varepsilon. \quad m \to \infty => |f_n(x)-f(x)| \le \varepsilon. => \sup |f_n(x)-f(x)| = ||f_n-f|| \le \varepsilon$

17.13 Anwendung auf C[a,b]

 $f \in C[a,b] => beschränkt => ||f||=sup|f(x)|=max|f(x)|$

 $f_n \in C[a,b], (f_n) CF bzgl. Norm => \exists f \in C[a,b] mit lim f_n = f$

17.14 Definition

Funktionenreihe: Funktionenfolge (s_n) mit $s_n = \sum_{k=1}^n f_k$. Bezeichnung: $\sum_{k=1}^\infty f_k$

Funktionenreihe glm. / punktweise konvergent <=> Funktionenfolge (s_n) glm. / pw. konv.

17.15 Satz

Reihe stetiger Fkt. konv glm. gegen stetige Grenzfunktion

Beweis: Bereits für Folgen bewiesen.

17.16 Satz "CAUCHY-Konvergenzbedingung bzgl. der Norm"

 $\exists \ Grenz funktion \ m. \ \textbf{gleichm.} \ konv. <=> \ \forall \ \epsilon>0 \ \ \exists \ n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \ ^{n+p} f_k|| < \epsilon \ \forall \ p \ \forall \ n>n_0=n_0(\epsilon), \ || \ \Sigma_{k=n+1}^{} \$

Beweis: Bereits für Folgen bewiesen.

17.17 Majorantenkriterium von Weierstrass

$$\begin{split} & \Sigma_{k=1}^{^{\infty}} f_k. \ \|f_n\| \leq c_n \ \text{für fast alle n und} \ \Sigma_{k=1}^{^{\infty}} c_k \ \text{konvergent} \ => \Sigma_{k=1}^{^{\infty}} f_k \ \text{konvergiert gleichmäßig} \\ & \text{Beweis:} \ \|\Sigma_{k=n+1}^{^{^{n+p}}} f_k\| \leq \ \Sigma_{k=n+1}^{^{^{n+p}}} \|f_k\| \leq \ \Sigma_{k=n+1}^{^{^{n+p}}} c_k \ , \ \text{letztere erfüllt Cauchy} \ => \ \text{glm. Konv.} \end{split}$$

§18 Potenzreihen

18.1 Definiton

 $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ Potenzreihe mit Entwicklungsstelle x_0 . Koeffizientenfolge (a_n) .

18.2 Beispiele

 $\sum_{n=0}^{\infty} x^n = 1/(1-x)$ für |x| < 1, $x_0 = 0$.

 $\sum_{n=0}^{\infty} x^n/n! = e^x, x \in R \text{ (siehe GÜ)}$

..... Herleitung des Konvergenzradius

Wurzelkriterium: $\limsup_{n} \sqrt{|a_n(x-x_0)^n|} < 1$ Konvergenz, >1 Divergenz

=> Folge ("√lanl) entweder unbeschränkt (Divergenz) oder beschränkt, dann β Grenzwert.

 β =0 => Konvergenz \forall x. β >0 Konvergenz für $|x-x_0|<1/β$, Divergenz für $|x-x_0|>1/β$

18.3 Satz

r:=1/limsup " $\sqrt{|a_n|}$ Konvergenzradius $(1/\infty := 0, 1/0 := \infty)$

K:={ $|x-x_0| < r$ } Konvergenzintervall der Potenzreihe.

Auf dem Intervall stellt die Potenzreihe eine Funktion dar.

Am Rande des Konvergenzintervalles keine Aussage möglich.

18.4 Beispiele

 $\sum_{n=1}^{\infty} x^n/n^p$. $\limsup_{n \to \infty} \sqrt{1/n^p} = \lim_{n \to \infty} 1 / (\sqrt[n]{n})^p = 1 => r=1$

p=0: Divergenz für x=-1, x=1

p=1: Konvergenz für x=-1, Divergenz für x=1

p≥2: Konvergenz für x=-1, x=1

18.5 Bemerkung

Aus Quotientenkriterium folgt:

Falls $\lim_{n\to\infty} |a_{n+1}/a_n| =: \alpha$ existient $=> \alpha=\beta$, $1/\alpha$ auch Konvergenzradius

18.6 Satz

- (a) [a,b] ⊂ (-r r) => Potenzreihe auf [a,b] **gleichmäßig** konvergent
- (b) $f := \sum_{n=0}^{\infty} a_n x^n$, $f: (-r,r) \rightarrow R => f$ stetig

Beweis: (a) c:=max{ |a|, |b| }. ||f_n||:=sup_{x\in[a,b]}|a_nx^n|\leq |a_n|c^n, \; \sum_{n=0}^{\infty}|a_n|c^n \; konvergent, da c im Konvergenzradius. => Majorante 17.17 => $\sum_{n=0}^{\infty}f_n \; konv. \; glm.$

(b) $x \in (-r,r)$. Intervall [a,b] umfaßt $x \Rightarrow$ glm. Konvergenz von stetigen Fkt. \Rightarrow Grenzfunktion stetig (17.15) \Rightarrow f stetig in $x \Rightarrow$ f stetig auf (-r,r)

18.7 ABELScher Grenzwertsatz

Potenzreige in (-r,r] / [-r,r) konvergent gegen f. => f im Punkt r / -r links-/rechtsseitig stetig Beweis: oBdA r=1, ---

18.8 Satz

f, g auf jeweiligem Konvergenzintervall durch Potenzreihe dargestellt. => f+g, f-g, fg auf dem gemeinsamen Intervall ebenfalls durch Potenzreihe darstellbar Beweis: 12.5 (Konvergente Reihen gliedweise addierbar), 13.21 (CAUCHY-Produkt v. Reihen)

18.9 Anwendung auf das Cauchy-Produkt

 Σa_k und Σb_k konvergent. Ist Cauchy-Produkt Σc_k mit $c_k := \Sigma_{i=0}^k a_i b_{k-i}$ ebenfalls konvergent $=> (\Sigma a_k)(\Sigma b_k) = \Sigma c_k$. Absolute Konvergenz nicht mehr nötig (vgl. 13.20), dafür Σc_k ! Beweis: Potenzreihen $\Sigma a_k x^k$ und $\Sigma b_k x^k$ konvergieren glm. auf [0,1] gegen stetige Fkt. => Sei $x \in (0,1) => 18.8$, linearität $=> (\Sigma a_k x^k)(\Sigma b_k x^k) = \Sigma c_k x^k => x \to 1$ - (Abelscher Gws).

18.10 Identitätssatz für Potenzreihen -- Koeffizientenvergleich

Zwei Potenzreihendarstellungen von f und g auf gemeinsamem Konvergenzintervall.

 (x_n) Folge, $x_n \neq x_0$, $x_n \rightarrow x_0$. $f(x_n) = g(x_n) \forall n => f(x) = g(x) \forall x => a_k = b_k$

Beweis: Induktion: f, g stetig. $\lim_{x\to\infty} f(x_n) = f(x_0) = \lim_{x\to\infty} g(x_n) = g(x_0) => a_0 = b_0$. Annahme: Koeffizienten 0,...,k gleich.

Schluß: $f_1(x) := a_{k+1} + a_{k+2}(x-x_0) + ... = (f(x) - \sum_{i=0}^{k} a_i(x-x_0)^i) / (x-x_0)^{k+1}$. Dito g_1 . Ann $= f_1 = g_1$.

 f_1,g_1 stetig: $a_{k+1}=\lim_{n \to \infty} f_1(x_n)=f_1(x_0)=g_1(x_0)=b_{k+1}$

18.11 Satz

f auf Intervall durch Potenzreihe dargestellt. => 1/f in δ -Umgebung als Potenzreihe darstellbar

Beweis: ---

18.12 Beispiel "Division von Potenzreihen"

$$\begin{split} f(x)/g(x) &= (\Sigma_{k=0}{}^{^{^{\infty}}}a_kx^k) \: / \: (\Sigma_{k=0}{}^{^{^{\infty}}}b_kx^k) \: = \: \Sigma_{k=0}{}^{^{^{\infty}}}c_kx^k, \: \: c_k \: unbekannte \: Koeffizienten. \\ &=> \: (\Sigma_{k=0}{}^{^{^{\infty}}}a_kx^k) \: = \: (\Sigma_{k=0}{}^{^{^{\infty}}}b_kx^k) \: \: (\: \Sigma_{k=0}{}^{^{^{\infty}}}c_kx^k\:) \: = \: \Sigma_{n=0}{}^{^{^{\infty}}}(b_0c_n + b_1c_{n-1} + ... + b_nc_0)x^n. \\ & \: Koeffizienten vergleich. \end{split}$$

§19 Konvergenz im Körper der komplexen Zahlen

..... Allgemeines

Betrag: √z·~z~

Keine Anordnung möglich ($i^2+1^2=0$)

Eigenschaften des Betrages gelten weiter

19.1 Definition

ε-Umgebung über Betragsdifferenz.

Übertragung d. Konvergenz, des ε-Kriteriums, der Cauchy-Folge

Analysis I Seite 20 von 27

19.2		Satz (a) Folge (z_n) konvergiert <=> Reelle Folgen (Re z_n) und (Im z_n) konvergieren (b) (z_n) Cauchy-Folge <=> $(Re \ z_n)$ und (Im z_n) Cauchy-Folgen (c) (z_n) konvergiert <=> (z_n) ist Cauchy-Folge Beweis: (a) =>: $ x_n-x_0 = Re(z_n-z_0) \le z_n-z_0 < \varepsilon$, <=: $ z_n-z_0 = (x_n-x_0) + i (y_n-y_0) \le x_n-x_0 + i y_n-y_0 < \varepsilon$ (b) analog, (c) aus (a) und (b) mit Cauchy.
	•••••	Konjugierte Folge hat gleiches Konvergenzverhalten
19.4	•••••	Bemerkung 8.4 gilt weiter (Linearität des Grenzwertprozesses)
19.5	•••••	Definition Reihen in C wie in R. Absolute Konvergenz bei Betrags-Konvergenz
	•••••	Absolut konvergente Reihe in C erst recht konvergent.
19.7	••••••	Satz Es gelten in C Majoranten-Kriterium (13.4) Wurzelkriterium (13.5) Quotientenkriterium (13.6)
19.8		Satz Es gelten (Zerlegung in Re und Im beim Beweis!) Kleiner, großer Umordnungssatz CAUCHYScher Doppelreihensatz CAUCHY-Produkt absolut konvergenter Reihen
19.9	•••••	Beispiele und Definition Exponentialrechung in C. e^z durch Reihenentwicklung $e^{z^{1+z^2}}$ durch Cauchy-Produkt von Reihen (Diagonalverfahren, Binominalkoeffs) $e^z=e^x$ (Re $e^{iy}+i$ Im e^{iy}). Beweis: e^x (1 + iy/1 - y²/2! -iy³/3! +) = e^x (Σ + i Σ)
19.10		$\begin{array}{l} \textbf{Definition} \\ \cos x := \text{Re } e^{\mathrm{i}x} = \sum_{k=0}^{\infty} (-1)^k \ x^{2k}/(2k)! = 1 \ -x^2/2! \ +x^4/4! \ \\ \sin x := \text{Im } e^{\mathrm{i}x} = \sum_{k=0}^{\infty} (-1)^k \ x^{2k+1}/(2k+1)! = x \ -x^3/3! \ +x^5/5! \ \\ => \text{Eulersche Formel: } e^{\mathrm{i}x} = \cos x + \mathrm{i} \sin x \\ \cos x = (e^{\mathrm{i}x} + e^{-\mathrm{i}x})/2, \sin x = (e^{\mathrm{i}x} - e^{-\mathrm{i}x})/2 \end{array}$
19.11	•••••	Satz und Definition, "Additionstheoreme" $\sin(x+y) = \sin x \cos y + \cos x \sin y$ $\cos(x+y) = \cos x \cos y - \sin x \sin y$ $\cos^2 x + \sin^2 x = 1$ $\lim_{x\to 0} \sin x / x = 1, \lim_{x\to 0} (\cos x - 1) / x^2 = -1/2$ $\pi/2 := \min \{ \cos x = 0 \}$ $e^{2\pi i} = 1$
19.14	•••••	Definition $\tan x = \sin x / \cos x$, $\cot x = \cos x / \sin x$
19.15		Satz und Definition Monotonie der trig. Funktionen auf gewissen Intervallen
19.16	•••••	Satz und Definition $z = r e^{i\phi}$ für alle komplexen Zahlen möglich
19.17		Satz und Definition Lösungen von $z^n=1$, n-te Einheitswurzeln: $\zeta_k=e^{i2\pi k/n}$ $z^n=c=$ Eine Lösung $w=$ ζ_0w , ζ_1w , sämtliche Lösungen

Ana-I

Analysis I Seite 22 von 27

Kapitel VII. Differenzierbare Funktionen

```
§20 ..... Differenzierbarkeit
20.1 ..... Definition
                         Menge in sich dicht <=> Jeder Punkt ist Häufungspunkt
                          f \ diffbar \ im \ Punkt \ x \ <=> \ \exists \ GW \ \lim_{x \to x_0} (f(x) - f(x_0)) / (x - x_0) = \lim_{h \to 0} (f(x_0 + h) - f(x_0)) / h =: f \ '(x_0) 
                          \iff \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0, \ | (f(x) - f(x_0)) / (x - x_0) - f'(x_0) | < \varepsilon
                          \iff Für jede Folge x_n \rightarrow x_0 gilt: (f(x_n)-f(x_0))/(x_n-x_0) \rightarrow f'(x_0)
                         f in jedem Punkt diffbar => f' Ableitung auf ganz S
20.2 ..... Satz
                         f diffbar in Punkt => f stetig in Punkt
                         Beweis: f(x)-f(x_0) = (f(x)-f(x_0)/(x-x_0) \cdot (x-x_0) \rightarrow f'(x_0) = 0
20.3 ..... Bemerkungen
                         Inkrement f(x_0+h)-f(x_0) = f'(x_0) h + r(h)
                         => (f(x_0+h)-f(x_0)) / h = f'(x_0) + r(h)/h. => r(h)/h \to 0.
20.4 ..... Satz
                         f in x_0 diffbar \iff \exists L mit f(x_0+h)-f(x_0) = Lh + r(h), r(h)/h <math>\to 0.
20.5 ..... Bemerkung
                         Bei Stetigkeit r(h) \rightarrow 0, hier r(h)/h \rightarrow 0
20.6 ..... Satz
                         (\alpha f)' = \alpha f'
                         (f+g)' = f' + g'
                         (f \cdot g)' = f'g + fg'
                         (f/g)' = (f'g - fg')/g^2
                         Beweis: Produktregel:
                           1/h \left( f(x_0 + h)g(x_0 + h) - f(x_0)g(x_0) \right) = 1/h \left( f(x_0 + h)[g(x_0 + h) - g(x_0)] + [f(x_0 + h) - f(x_0)]g(x_0) \right) = \dots
                         Quotientenregel: Spezialfall 1/g. Auf \delta-Umgebung \neq 0. Wie oben.
20.7 ..... Kettenregel
                         f: T\rightarrowR, g: S\rightarrowR. g(S)\subsetT. g in x_0 diffbar und f in y_0 = g(x_0) diffbar =>
                          f o g diffbar mit (f o g)' = f ' o g \cdot g '
                         Beweis: Inkrement für f aufstellen. \varphi(y) := \{ r(y-y_0) / (y-y_0) \text{ bzw. } 0 \}, stetig in y_0, da
                         r(h)/h \rightarrow 0
                           g diffbar in x_0 => g stetig in x_0 => \varphi(g(x)) \rightarrow 0.
                           f(y)-f(y_0) = (f'(y_0) + \phi(y))(y-y_0) => (f(g(x)) - f(g(x_0)))/(x-x_0) =
                               (f'(g(x_0)) + \phi(g(x))) (g(x)-g(x_0))/(x-x_0) \to f'(g(x_0)) \cdot g'(x_0)
20.8 ..... Satz "Ableitung der Umkehrfunktion"
                         f auf Intervall streng monoton, in x_0 diffbar mit f'(x_0) \neq 0.
                          => f^{-1}: f(I) \rightarrow R \text{ diffbar in } y_0:=f(x_0), (f^{-1})'(y_0) = 1/f'(x_0)
                         Beachte: g=f^{-1} \Rightarrow g'(y_0) = 1 / f'(g(y_0))
                         Beweis: x := f^{-1}(y). \Rightarrow (f^{-1}(y) - f^{-1}(y_0)) / (y - y_0) = (x - x_0) / (f(x) - f(x_0)). f^{-1} stetig: y \rightarrow y_0 = y_0
                         Beispiele: \log x, x^{\alpha}, (\ln f(x))' = f'(x) / f(x) logarithmische Ableitung
20.9 ..... Definition
                         Rechts-/Linksseitige Diffbarkeit.
20.10 ..... Bemerkung
                         Leibniz-Schreibweise
```

Analysis I Seite 23 von 27

§21		Mittelwertsatz der Differentialrechnung
21.1		Definition Absolutes Maxiumum/Minimum von $f \iff f(x_0) \ge f(x) \ \forall \ x \in S$ Lokales Maxiumum/Minimum von $f \iff \exists \ \delta > 0 \ f(x_0) \ge f(x) \ \forall \ x \in U_\delta(x_0) \cap S$ Lokales Extremum \iff Lokales Maxiumum/Minimum Lokale Extrema nur in Häufungspunkten sinnvoll.
21.2	•••••	f lokales Extremum in x_0 und dort diffbar => f'(x_0) = 0 Beweis: Differenzenquotienten für links- und rechtsseitige Annäherung aufstellen
21.3		Satz von Rolle f: $[a,b] \rightarrow R$ stetig, auf (a,b) diffbar, $f(a)=f(b)=0$. $\Rightarrow \exists \xi \in (a,b)$ mit $f'(\xi)=0$ Beweis: Stetige Fkt. auf kompakter Menge $\Rightarrow \exists$ absolutes Extremum $\Rightarrow f'(\xi)=0$ Beachte: Notwendig: 16.9 (Max/Min auf kompakter Menge), Bolzano-Weierstrass, Monotonieprinzip, Vollständigkeitsaxiom
21.4	•••••	Mittelwertsatz der Differentialrechnung f: $[a,b] \rightarrow R$ stetig, auf (a,b) diffbar. $\Rightarrow \exists \xi \in (a,b), (f(b)-f(a))/(b-a) = f'(\xi)$ Beweis: $h(x) := f(x) - f(a) - ((f(b)-f(a))/(b-a) \cdot (x-a). \Rightarrow \text{Rolle: } \exists \xi \text{ mit } h'(\xi) = 0$
21.5		Bemerkungen zum Mittelwertsatz der Differentialrechnung Andere Formulierungen: $ \exists \ \xi \ \text{mit} \ f(b)\text{-}f(a) = (b\text{-}a) f'(\xi), f(b) = f(a) + (b\text{-}a) \ f'(\xi) \\ \exists \ \delta \in (0,1) \ \text{mit} \ (f(b)\text{-}f(a))/(b\text{-}a) = f'(a+\delta(b\text{-}a)) \\ I \ \text{Intervall} \ [x_0, x_0\text{+}h]. \ \exists \ \delta \in (0,1) \ \text{mit} \ f(x_0\text{+}h) = f(x_0) + h \cdot f'(x_0 + \delta h) $
21.6		Satz (aus MWS) (1) $f'(x)=0 \forall x => f = const.$ (2) $f'(x)>0 \forall x => f$ streng monoton wachsend Beweis: $x_1 < x_2 .=> \exists \xi mit f(x_2)-f(x_1) = f'(\xi) (x_2-x_1)$
21.7		
		Verallgemeinerter Mittelwertsatz $f, g: [a,b] \rightarrow R \text{ stetig, diffbar auf } (a,b). \Rightarrow \exists \ \xi \in (a,b), \ [f(b)-f(a)]g'(\xi) = [g(b)-g(a)]f'(\xi) \\ => \text{ wenn } \mathbf{g'(x)} \neq 0 \ \forall \ \mathbf{x}: \ (f(b)-f(a))/(g(b)-g(a)) = f'(\xi) / g'(\xi) \\ \text{Beachte: } g(x) = x \text{ liefert den bekannten MWS.} \\ \text{Beweis: } \phi(x) := [f(b)-f(a)]g(x) - [g(b)-g(a)]f(x). \Rightarrow \phi(a) = \phi(b) = f(b)g(a)-f(a)g(b). \\ \text{MWS: } \exists \ \xi \text{ mit } \phi'(\xi) = 0 \Rightarrow \text{Beh.} \\ g'(x) \neq 0 \Rightarrow \text{MWS: } g(a) \neq g(b).$
21.9		Regel von L'Hospital $f, g: (a,b) \to R, g(x) \neq 0, g'(x) \neq 0 \ \forall \ x.$ $(A1) \lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = 0$ $(A2) \lim_{x \to a+} g(x) = \pm \infty$ Gilt (A1) oder (A2) und $\exists \ L:=\lim_{x \to a+} (f'(x) / g'(x)) \implies \exists \lim_{x \to a+} f(x) / g(x) = L$ Motivation: $\lim_{x \to a} f(x) = 0, \lim_{x \to a} g(x) = 0, f, g \text{ stetig in } a => f(a) = g(a) = 0.$ $\implies f(x) / g(x) = (f(x) - f(a)) / (g(x) - g(a)) = (\text{Erweitern mit } 1 / (x - a), x \to a) = f'(a) / g'(a)$ Beweis:

Analysis I Seite 24 von 27

21	.11	 Satz und	Definition
41.	.11	 Satz unu	Deminion

Hyperbolische Funktionen, deren Umkehrfunktionen und Ableitungen

§22 Differentiation von Funktionenfolgen

22.1 Beispiel

 $\sin(n^2x) / n \rightarrow 0$ glm., da $||f_n|| \le 1/n$. $|f_n| = n \cos(n^2x)$ divergent!

22.2 Gliedweise Differentiation von Funktionenfolgen

Beschränktes Intervall, f_n diffbar, $\exists x_0$, $(f_n(x_0))$ konvergent. (f_n') glm. konvergent => (f_n) glm. konvergent, $f_n \rightarrow f$ mit f diffbar, $f_n' \rightarrow f'$ glm.

Die Folge (f_n) darf gliedweise differenziert werden.

Aus punktweiser Konvergenz in einem Punkt wird gleichmäßige Konvergenz auf I, wenn nur die gediffte Funktionenfolge glm. konv. Beweis: ---

22.3 Gliedweise Differentiation von Funktionenreihen

Beschränktes Intervall, f_n diffbar, $\exists x_0, \Sigma_{k=1}^{\infty} f_k(x_0)$ konvergent. $\Sigma_{k=1}^{\infty} f_k'(x_0)$ glm. konvergent $\Sigma_{k=1}^{\infty} f_k'(x_0)$ glm. konvergent und $\Sigma_{k=1}^{\infty} f_k'(x_0)$ glm. konvergent und $\Sigma_{k=1}^{\infty} f_k'(x_0)$

22.4 Satz

Potenzreihe innerhalb des Konvergenzradius wie üblich gliedweise diffbar, Radius bleibt gleich!

Beweis: Nur Radius zu zeigen. $\limsup_{n \to \infty} \sqrt{n \cdot |a_n|} = \lim_{n \to \infty} \sqrt{n$

22.5 Definition

Stammfunktion F: $F'(x) = f(x) \forall x$, unterscheiden sich nur um additive Konstante!

22.6 Satz

Stammfunktion einer Potenzreihe im Konvergenzradius wie üblich gliedweise.

..... Beispiel

Logarithmusreihe: $\ln(1+x) = \sum_{k=0}^{\infty} (-1)^k / (k+1) \cdot x^{k+1} = x - x^2 / 2 + x^3 / 3 - ..., -1 < x \le 1$ <=: $d/dx \ln(1+x) = 1 / (1+x) = \sum_{k=0}^{\infty} (-1)^k x^k$. Geometrische Reihe Ebenso $\ln(1-x)$, $\ln((1+x) / (1-x))$

§23 Höhere Ableitungen und der Satz von TAYLOR

23.1 Definition

Höhere Ableitungen rekursiv definiert

n-mal diffbar: Die ersten 0,..., n Ableitungen existieren

23.2 Satz

Potenzreihe beliebig oft diffbar auf Konvergenzintervall

23.3 Definition

 $T_n(x) := \sum_{k=0}^n f^{(k)}(x_0)/k! \cdot (x-x_0)^k$ das n-te Taylor-Polynom an der Stelle x_0 .

23.4 Satz von Taylor

f n-mal stetig diffbar und (n+1) mal diffbar auf Innerem eines Intervalles. => $f(x) = T_n(x) + R_n(x)$.

- (a) $\exists \xi \in I^{\circ}$, $R_n(x) = f^{(n+1)}(\xi)/(n+1)! \cdot (x-x_0)^{n+1}$
- Restglied nach LAGRANGE
- (b) $\exists \eta \in I^{\circ}, R_n(x) = f^{(n+1)}(\eta)/n! \cdot (x-x_0) (x-\eta)^{n+1}$

Restglied nach CAUCHY

Beachte: Für n=0 MWS 21.5. $R_n(x)$ gibt an, wie gut das Polynom die Funktion approximiert. Beweis: ---

23.5 Beispiel

 $f(x) = e^x. \ f^{(k)}(0) = 1. \ T_3(x) = 1 + x + 1/2 \ x^2 + 1/6 \ x^3. \ R_{3,\text{LAGRANGE}}(x) = 1/24 \ e^\xi \ x^4 \ \text{für} \ \xi \in (0,x).$ x := 1/2. Abweichung 0,0053.

23.6 Definition

Ist $f \in \mathbb{C}^{\infty}$, $T(x) := \sum_{k=0}^{\infty} f^{(k)}(x_0)/k! \cdot (x-x_0)^k$ Taylor-Reihe von f an der Stelle x_0 .

23.7	Bemerkungen Konvergenzradius der Taylor-Reihe nicht notwendig >0. (Beispiel: e^(-1/x²) in 0) Falls konvergent , so nicht notwendig gegen f.
23.8	$\bf Satz$ Jede Potenzreihe ist in ihrem Konvergenzintervall die $\bf T_{AYLOR}$ -Reihe von ihrer Funktion f an der Stelle $\bf x_0$.
23.9	$\begin{split} \textbf{Satz} \\ & \text{Taylor-Entwicklung} \ f(x) = & \sum_{k=0}^{\infty} f^{(k)}(x_0)/k! \cdot (x - x_0)^k <=> R_n(x) \rightarrow 0 <= \exists \alpha, C \text{mit} f^{(n)}(x) \leq \\ & \alpha C^n \\ & \text{Beweis:} \ (1) \text{klar.} \ (2) R_{n,\text{Lagrange}}(x) = f(x) - T_n(x) \leq \alpha C^{n+1} (x - x_0)^{n+1}/(n+1)! \rightarrow 0, \text{denn a}^n/n! \rightarrow 0, \\ & \text{da } \Sigma a^n/n! = e^a. \\ & \text{Beachte: Ist f durch Potenzreihe dargestellt, so ist dies die Taylor-Entwicklung.} \end{split}$
23.10	Satz Ersten n-1 Ableitungen Null, n-te Ableitung $\neq 0$. n ungerade => f kein Extremum n gerade, $f^{(n)}(x_0) < 0$ => lokales Maximum. $f^{(n)}(x_0) > 0$ => lokales Minimum. Beweis: Taylor-Reihe, bleiben nur zwei Glieder.

Analysis I Seite 26 von 27

Stichwortliste Analysis I

Vollständigkeitsaxiom	§3
	c:= a + (b-a)/(k · $\sqrt{2}$). Irrational, da sonst $\sqrt{2}$ =(b-a)/k(c-a)
Bernoullische Ungleichung	
	-a < m/n < b <=> na < m < nb. => ∃ n mit n(b-a)>1
Indentitätssatz für Polynome	
	-1 = $n \sqrt{n}$ -1. => $n = (x_n - 1)^n$. Binom-Koeffs von 0 und 2.
Vier Prinzipien der Konvergenztheorie	
vier i imzipien dei ikonvergenzuioone	Intervallschachtelung
	Auswahlprinzip von Bolzano-Weierstrass
	Cauchysches Konvergenzkriterium
Reihen	
	Teleskopsumme
	Majorante / Minorante
	Wurzelkriterium
	Quotientenkriterium
	Integralkriterium
	DIRICHLET
	Leibniz
Geometrische Reihe	§12
Teleskopsumme	§12
$\sum_{k=1}^{\infty} 1/k$	$ \varepsilon = 1/2$, Cauchy, m:=2n. $1/(n+1) + 1/(n+2) + > n/2n$
$\sum_{k=1}^{\infty} 1/k^2$	$ \le 1 + \sum_{k-2}^{n} 1/k(k-1)$
Absolut konvergente Reihe erst recht konvergent	
Majorante / Minorante	
Wurzelkriterium	Majorisieren durch geometrische Reihe
Quotientenkriterium	
Zwischenwertsatz	Stetige Funktion auf beschränktem Intervall beschränkt,
	sup / inf werden angenommen, Intervall auf Intervall
Norm-Gesetze	
Funktionenfolgen / -Reihen	
	Cauchy, Weierstrass, Supremumsnorm
Funktionenfolge stetiger Fkt. glm. gegen f	
f-Folge: Cauchy	$ f_n(x)-f_m(x) < \varepsilon$ Konvergenz
	$\ f_n - f_m\ < \varepsilon $ Glm. Konvergenz
f-Reihe: Cauchy	Glm. Konvergenz, $\parallel \Sigma \parallel < \epsilon$
Majorantenkriterium von	Weierstrass. $\ f_n\ < c_n$, $\sum c_n$ konv. $\Rightarrow \sum f_k$ konv. glm.
Potenzreihen	Radius aus Wurzelkriterium herleiten
	Gleichm. Konv. auf enthaltenem kompakten Intervall
	Grenzfunktion stetig
	ABELSCHER Grenzwertsatz
Differenzierbarkeit	Inkrementbetrachtung
	Produkt/Quotientenregel
	Kettenregel
	Ableitung der Umkehrfunktion
	Rolle $f(a)=f(b)=0, f'(\xi)=0$
	Mittelwertsatz aus Rolle.
	Verallgemeinerter MWS $(f(b)-f(a))g'(\xi) = (g(b)-g(a))f'(\xi)$
Differentiation von Funktionenfolgen	Beschr. Interv., f_n diffb., $(f_n(x_0))$ konv., (f_n') glm. konv. =>
	f _n konv. glm., gliedweise diffbar
Potenzreihe diffen	Gliedweise, Radius bleibt ($^{n}\sqrt{n}\rightarrow 1$)
Taylor	
	Restglieder!