Theoretische Informatik I / II Prof. Kupka

WS 1995/96 SS 1996

Wilko Hein

1 Formale Sprachen und Grammatiken

..... Definitionen

Alphabet (nichtleere endliche Menge), Symbole, Wort über Σ , Leeres Wort, Länge. L aus Σ^* Formale Sprache (Mengenbeschreibungen, Grammatiken, reguläre Ausdrücke, Graphen).

1.1 Mathematische Mengenbeschreibungen

Endliche Auflistung

Unendliche Auflistung

Charakerisierung durch logische Aussagen

Rekursive Mengengleichungen L= $\{\epsilon\} \cup \{a\}L\{b\}$

1.2 Grammatiken

Produktion: Paar $\langle p, q \rangle \in \Sigma^* \times \Sigma^*$

Semi-Thue-System: (Σ,P) , P endlich und nicht leer

Terminalzeichen: T Nichtterminalzeichen: N

Chomsky-Grammatik: G=(T,N,P,S), T und N disjunkte Alphabete, $(T \cup N, P)$

Semi-Thue-System, S aus N Startelement

Definition Typen von Grammatiken

G=(T, N, P, S) hat Typ:

0: $P \subseteq V^+ \times V^*$ (ϵ nie vorne)

1: $P \subseteq V^* N V^* \times V^*$ [Monoton] (links mindestens ein Nicht-Term) $\{a^nb^nc^n\}$ Entweder $|p| \le |q|$ (Sprachen, die ϵ nicht enthalten) oder p=S und $q=\epsilon$, ϵ nirgends rechts

2: $P \subseteq N \times V^*$ (A \rightarrow w) [Kontextfrei] {aⁿbⁿ}

3: $P \subseteq N \times \{ \{ \epsilon \} \cup T \cup TN \}$ $(A \rightarrow \epsilon, A \rightarrow t, A \rightarrow tB \text{ [Rechtslinear], [Regulär], vv.) } \{a^nb^m\}$

Definition Ableitungen

Direkte Ableitung $(\exists a,b,p,q \in (T \cup N)^*, x=apb, y=aqb, (p \rightarrow q) \in P)$, Relation

Ableitung (Relation ist reflexive transitive Hülle)

Erzeugte Sprache L(G)

Satzform (Aus Startsymbol ableitbares Wort), terminale Satzform

Satz Typ 1,2,3 => Typ 0

Definition Äquivalenz

Grammatiken heißen äquivalent, wenn gleiche Sprache erzeugen

Übersicht Grammatik ↔ Sprache

0 --- Aufzählbar 1 Monoton Kontextsensitiv 2 Kontextfrei Kontextfrei 3 Regulär Regulär

Definition Kontextsensitiv

Alle $p \rightarrow q$ der Form $p = \alpha A \gamma$, $q = \alpha \beta \gamma$, $\beta \neq \epsilon$ oder ϵ nur auf r.S. in $S \rightarrow \epsilon$

Satz Kontextsensitive Grammatik ist monoton

Satz Monotone G. => Kontextsensitive G.

Konstruktiv. Alle Terms x durch Nichtterms X mit $X \rightarrow x$. Alle $A_1A_2...A_n \rightarrow B_1B_2...B_m$, $n \le m$ (Monotonie): Aufspulen: Von links alle einzeln durch neue Nichtterms. Abspulen: Von rechts alle neuen Nichtterms durch Zielsymbole.

GÜ Definition ... ε-Bedingung bei Typ-2

Höchstens $S \to \epsilon$ in Grammatik, sonst ϵ nirgends rechts.

Definition Nutzlose Symbole und Regeln bei Typ-2

Nutzloses Symbol Z: Gibt keine Ableitung $S \Rightarrow \alpha Z\beta \Rightarrow w$ mit w als terminaler Satzform Nutzlose Regeln: Regeln mit nutzlosen Symbolen.

GÜ Satz Beautifier für Typ-2

ε ∉ L => Äquiv. G. ohne nutzlose Symbole, Regeln, ε-Regeln, Kettenprod.

 ϵ -Regeln eleminieren: In V_{ϵ} sukzessive alle sammeln, die auf ϵ . Auf jeder rechten Seite alle möglichen Kombinationen von NichtTerms aus V_{ϵ} weglassen, aber nie ϵ alleine rechts. Nutzlose Symbole und -Regeln eleminieren: V_{T} (Alle NichtTerms, die auf Terminales) per Induktion: Als neue Nichtterms. Dann per Induktion alle unerreichbaren Zeichen entfernen.

GÜ Definition ... Rekursivität bei Typ-2

Rekursiv: $A ==> \alpha A \beta$. Linksrekursiv: $\alpha = \varepsilon$. Rechtsrekursiv: $\beta = \varepsilon$

GÜ Satz Typ-2 => Typ-2 ohne linksrekursive Variablen

$$\begin{split} A_i &\rightarrow A_i \alpha_1 \mid A_i \alpha_2 \mid ... \mid \beta_1 \mid \beta_2 \mid ..., \, \beta \text{ beginnen nicht mit } A_i. \\ &=> A_i \rightarrow \beta_1 \mid \beta_2 \mid ... \mid \beta_1 A_i' \mid \beta_2 A_i' \mid ..., \quad A_i' \rightarrow \alpha_1 \mid \alpha_2 \mid ... \mid \alpha_1 A_i' \mid \alpha_2 A_i' \mid ... \end{split}$$

Danach für dieses i und alle kleineren j: $A_i \rightarrow A_i \alpha$

 \Rightarrow $A_i \rightarrow \gamma_1 \alpha \mid \gamma_2 \alpha \mid ...$, wobei die γ aus $A_i \rightarrow \gamma_1 \mid \gamma_2 \mid ...$

Definition Chomsky-Normalform

G = (T, N, P, S), Alle Regeln der Form $A \rightarrow a$, $A \rightarrow BC$

Ableitungsbäume sind Binärbäume, Satzformen in Knoten!

Satz Typ-2 mit $\varepsilon \notin L \Rightarrow$ Typ-2 in Chomsky-Normalform

Vorr.: Keine nutzlosen Symbole, ε-Regeln, Kettenproduktionen

Terms x durch Nichtterms X mit $X \rightarrow x$. Splitten durch neue Nichtterms

Definition Typ-2: Greibach-Normalform

Alle Regeln der Form $A \rightarrow a \beta$, $A \in N$, $a \in T$, $\beta \in N^*$

=> ϵ ∉ L . Zweck: Erkennen, ob Wort in L. Linear abzuarbeiten.

GÜ Satz Typ-2 ohne linksrekursive Variablen => Typ-2 in Greibach-Normalform

3 Stufen. Ordne NichtTerms so, daß **nicht** $A_i => A_j \alpha$ für j<i. Sukzessive NichtTerm suchen, das auf kein noch nicht eingeordnetes am Anfang führt und vorne an Liste anfügen.

In Liste von hinten nach vorne jedes $A_i \rightarrow A_i \alpha$ mit i<j

 $=> A_i \rightarrow \beta_1 \alpha \mid ... \mid \beta_k \alpha \text{ mit } \beta \text{ aus } A_i \rightarrow \beta_1 \mid \beta_2 \mid ... \text{ (beginnen mit const.)}$

In $A \to \alpha \ x_1 \dots x_k \implies A \to \alpha \ X_1 \dots X_k, \quad X_i \to x_i \quad (S \to \epsilon)$ evtl wieder dazu.

1.3 Reguläre Ausdrücke

Idee: Beschreibung formaler Sprachen durch Ausdrücke mit wenigen Operatoren

Definition Mengenprodukt AB, A^o, Aⁱ⁺¹, A^{*} (Auch: Kleene'sche Hülle)

Definition Reguläre Mengenoperationen

Vereinigung, Mengenproduktbildung, Hüllenbildung

Definition Reguläre Mengen

 \emptyset , $\{\epsilon\}$, $\{a\}$ reguläre Mengen. Dazu alle durch reguläre Mengenoperationen aus regulären Mengen entstehenden Mengen

Definition Reguläre Ausdrücke (Worte über Σ)

 \emptyset regulärer Ausdruck mit $L(\emptyset) = \emptyset$

 ε regulärer Ausdruck mit $L(\varepsilon)=\varepsilon$

a regulärer Ausdruck mit L(a)=a

 r_1 , r_2 reguläre Ausdrücke. Dann sind auch $(r_1 \cup r_2)$ [= $(r_1 | r_2)$ = $(r_1 + r_2)$], $(r_1 r_2)$, (r_1^*) reguläre Ausdrücke mit $L(r_1 r_2) = L(r_1)L(r_2)$, ...

Definitionen Mathematische Begriffe

Halbgruppe: (A, o) mit o assoziativ Monoid: Halbgruppe mit 1-Element

Homomorphismus: $f(a \circ b) = f(a) \circ O(b)$ mit (A, o) und (B, O) Halbgruppen

Satz Mathematische Operationen auf Mengen

 (Σ^*, \cdot) ist Monoid $(1=\epsilon)$

Längenfunktion ist Monoidhomomorphismus

($\mathbf{P}(\Sigma^*)$, ·) ist Monoid (1= { ε })

 $(R, \cdot), (R, \cup)$ Monoide, R: reguläre Ausdrücke, $1=\{\epsilon\}$ bzw. $1=\emptyset$.

Dito mit Ausdrücken R. Halbgruppe! Ea und a haben nur gleiche Bedeutung!

L: reg. Ausdruck \rightarrow reg. Menge ist Homomorphismus

Satz von Arden (Gleichungsauflösung mit Mengengleichungen)

 $X = A \ X \cup B$ besitzt $X = A^* B$ als Lösung. Einzige Lsg., wenn $\epsilon \notin A$. $X = X \ A \cup B$ besitzt $X = B \ A^*$ als Lösung. Einzige Lsg., wenn $\epsilon \notin A$.

Algorithmus Regulärer Ausdruck => bel. Wort aus regulärer Menge

Nichtdeterminismus bei Vereinigung und Hülle!

1.4 Graphen

Praxis der grammatischen Darstellung. Früher: Backus-Naur-Form (Algol 60) => kontext-freie Grammatik. Heute: Syntax-Diagramme (Pascal). Unterscheide "mit" und "ohne" Referenzen.

..... Syntaxdiagramme mit Referenzen <= gleichmächtig=> Typ-2-G.

...... Syntaxdiagramme ohne Referenzen <= gleichmächtig=> Typ-3-G.

Algorithmus Syntaxdiagramm => Graphenform rechtslinearer Grammatik

Satz Sprache aus Syntaxdiagramm ohne Referenzen => rechtslineare Grammatik

Satz Rechtslineare Grammatik => Syntaxdiagramm ohne Referenzen

2 Endliche Automaten

2.1 Grundkonzepte für Automaten

Aus Syntaxdiagramm "Zustände". Zustände besitzen Semantik.

2.2 DEA

Definition **DEA** $A=(Q, \Sigma, \delta, q_0, F)$

Q: Nichtleere, endliche Menge, sog. Zustandsmenge

Σ: Alphabet

δ: totale Abbildung: δ: Q × Σ → Q

 $q_0 \in Q$: Anfangszustand

 $F \subseteq Q$: Endzustandsmenge

Definition Arbeit eines DEA

Arbeitsschritt: Tripel (p, a, q), wobei $\delta(p, a) = q$

Arbeitsvorgang: Durch Wort $w=a_1...a_n$ ausgelöste Folge $p_0, p_1, ..., p_n \in Q^*$ mit

 $p_0=q_0$, (p_i, a_{i+1}, p_{i+1}) ist Arbeitsschritt

Definition Leistung eines DEA

A erkennt Wort w dann, wenn für den durch w ausgelösten Arbeitsvorgang gilt: $p_n \in F$

2.3 NEA

Definition NEA A= $(Q, \Sigma, \delta, S, F)$

Q: Nichtleere, endliche Menge, sog. Zustandsmenge

Σ: Alphabet

 δ : totale Abbildung: δ : Q × Σ \rightarrow **P**(Q) := { P | P \subseteq Q }

 $S \subseteq Q$: Anfangszustandsmenge

 $F \subseteq Q$: Endzustandsmenge

Definition Arbeit eines NEA

 $Arbeits schritt: Tripel \ (p, \, a, \, q) \in Q \times \Sigma \times Q \quad mit \quad q \in \delta(p, \, a) \ \ (Wahlmöglichkeit)$

Arbeitsvorgang: s.o., $s_0 \in S$

Definition Leistung eines NEA

Wort akzeptiert \iff Ex. von w ausgelöster Arbeitsvorgang mit $p_n \in F$

angelischer Nichtdeterminismus: akzeptierbar -> akzeptiert

dämonischer Nichtdeterminismus: rückweisbar -> weist zurück

Definition Erweiterte Transitionsfunktion beim DEA

$$\tilde{\delta} : Q \times \Sigma^* \to Q. \quad \tilde{\delta}(q, \varepsilon) = q, \quad \tilde{\delta}(q, aw) = \tilde{\delta}(\delta(q, a), w)$$

=> Für
$$|w| = 1 - \delta^{-}(q, w) = \delta(q, w)$$
. $\delta^{-}(q, w) = \delta(q, w) = \delta(q, w) = \delta(q, w) = \delta(q, w)$

DEA A: L(A) = { w |
$$\delta(q_0, w) \in F$$
 }

Definition Mächtigkeit

- 1) Automat X äquivalent zu Y \iff L(X) = L(Y)
- 2) Klasse K_1 von Automaten äquivalent zu Klasse $K_2 \ll Zu$ jedem $X \in K_1 \exists \ddot{a}q. Y \in K_2$ und umgekehrt.

[Klasse der DEA \cong Klasse der NEA \cong Klasse der NEAs \cong Klasse der EA \cong Klasse NRSA]

Definition Erweiterte Transitionsfunktion beim NEA

$$\tilde{\delta} : \mathbf{P}(Q) \times \Sigma^* \to \mathbf{P}(Q)$$

$$\tilde{\delta}^{\sim}(P,\,\epsilon) = P \quad (P \subseteq Q), \quad \tilde{\delta}^{\sim}(P,\,wa) = \delta_{\{\}}(\tilde{\delta}^{\sim}(p,\,w),\,a) \quad \text{mit } \delta_{\{\}}(R,\,a) = \cup_{p \in R} \, \delta(p,\,a)$$

NEA A: L(A) = { $w \mid ~ \tilde{\delta}(S, w) \cap F \neq \emptyset$ }

=>: Q':=Q, S=
$$\{q_0\}$$
, F'=F, $\delta'(q, a) = \{\delta(q, a)\}$

<=: Stundenübung!!!!

Algorithmus NEA => DEA

1.
$$Q' := \{S\}$$

2. D:={
$$\bigcup_{p \in S} \delta(p, a) \mid a \in \Sigma$$
 } (Die Zustände, die mit einem Zeichen erreichbar)

3.
$$\forall X \in D \ (X \subseteq Q \ !!), \ X \notin Q', \ bilde Update Q' = Q' \cup \{X\}.$$

$$D = D \cup \{ \cup_{p \in X} \delta(p, a) \mid a \in \Sigma \}. GOTO 3$$

Praxis: Tabelle Zustand - Symbol. Sukzessive erweitern. Neue Zustände: Mehrfachindizes. Dabei "Leere Menge" beachten!

Definition EA

$$A = (Q, \Sigma, P, S, F)$$

$$Q, \Sigma, S, F$$
 wie NEA

$$(Q \cup \Sigma, P)$$
 ist Semi-Thue-System, $P \subseteq Q \Sigma \times Q$, d.h. $qa \rightarrow q'$

Arbeitsschritt: (q, a, q') mit $(qa \rightarrow q') \in P$

Arbeitsvorgang: s.o.

Erkennen: s.o.

Theoretische Informatik

Prof. Kupka, WS 1995/96, SS 1996

=>:
$$\delta(q,a) = \{ p \mid p \in Q, (qa \to p) \in P \}$$

<=: $P = \{ (qa \to p) \mid p \in \delta(q,a) \}$

Bemerkung EA <--> DEA (?)

EA entspricht DEA, wenn |S|=1 und $|\{p \mid (qa \rightarrow p) \in P\}|=1$

Bemerkung Darstellung des Nichtdeterminismus

- Funktion, die in die Menge der Alternativen abbildet

- Relation als Verallgemeinerung von Funktion: $R \subseteq A \times B$

Definition ΝΕΑε

$$A = (Q, \Sigma, \delta, S, F)$$

$$\delta: Q \times (\Sigma \cup \{\epsilon\}) \to \mathbf{P}(Q)$$

Arbeit, Arbeitsschritt, Leistung

Definition Erweiterte Transitionsfunktion

$$\tilde{\ }\tilde{\delta} : \textbf{P}(Q) \times \Sigma^* \to \textbf{P}(Q)$$

 $\tilde{\delta}(P, \varepsilon) = S_{\varepsilon}(P) = \text{Menge aller von P durch } \varepsilon - \ddot{U}$ bergänge oder Nichtstun erreichbare Zst. $S_{\varepsilon}(P) = P \cup \delta_{()}(S_{\varepsilon}(P), \varepsilon), \qquad \delta_{()}$ wie oben

$$\tilde{\delta}(P, wa) = S_{\varepsilon}(\delta_{\varepsilon}(\tilde{\delta}(P, w), a))$$

Satz NEA $\varepsilon \ll NEA$

 $=>: \ \delta'(q,a) = \ \tilde{} \delta \tilde{} (\{q\},\,a), \ F' = F \ \cup \ \{\ q \in S \ | \ S_\epsilon(q) \ \cap \ F \ \neq \varnothing \ \} \ \ (Die,\, die \ \epsilon \ direkt \ sammelt)$

<=: Triv.

Beweis: Fallunterscheidungen!!!

Definition NRSA (Nicht-deterministischer Rabin-Scott-Automat)

Wie NEAε, kann aber in einem Schritt ganzes Wort (oder auch leeres Wort) lesen.

Folgerung Klasse der von allen DEA's, NEA's, NEAε's und NRSA's erkannten Sprachen gleich

2.3 Endliche Automaten mit Ausgabe

Mealy-Automat: Ausgabe in Abhängkeit von Zustand & Eingabe.

Moore-Automat: Ausgabe in Abhängigkeit vom Zustand.

Definition Mealy-Automat

 $M = (Q, \Sigma, \Delta, \delta, \lambda q_0)$

Q: Endliche, nichtleere Menge, Zustandsmenge

Σ, Δ: Zwei Alphabete: Ein- und Ausgabealphabet

 $\delta \colon\thinspace Q \times \Sigma \to Q \:\: totale \: Fkt.$

 $\lambda \colon \ Q \times \Sigma \to \Delta \ \ totale \ Fkt.$

 $q_0 \in Q$: Anfangszustand

Definition Ausgabefolge

Eingabefolge $a_1 a_2 ... a_n \in \Sigma^*$

Ausgabefolge $b_1b_2...b_n \in \Delta^*$ mit $b_i = \lambda(q_{i,1}, a_i), q_i = \delta(q_{i,1}, a_i)$

Beispiel Serienaddierer

Satz Es gibt keinen endlichen Mealy-Automaten, der Binärzahlen multipliziert

Beweis: Übung!!!

Definition Moore-Automat

 $\mathbf{M} = (\mathbf{Q}, \, \boldsymbol{\Sigma}, \, \boldsymbol{\Delta}, \, \boldsymbol{\delta}, \, \boldsymbol{\lambda}, \, \mathbf{q}_0)$

Differenz zum Mealy-Automaten: $\lambda \colon Q \to \Delta$ total

Definition Ausgabefolge

Ausgabefolge $b_0b_1b_2...b_n \in \Delta^*$ mit $b_i = \lambda(q_i)$, $q_i = \delta(q_{i-1}, a_i)$. Beachte $b_0!$ Länge!

Definition Äquivalenz von Automaten mit Ausgabe

Moore- und Mealy äquivalent, wenn sich die zu gleicher Eingabefolge produzierten Ausgaben nur um $b_0 = \lambda(q_0)$ unterscheiden.

2.4 Charakterisierung der Klasse regulärer Sprachen

Definition Äquivalenz

 $L(A_1) = L(A_2)$. Sprache erkannt (EA) oder erzeugt (Grammatik) oder beschrieben (Reg. Ausdr.), beide Seiten gleich!

Definition Korrespondenz (!!!)

s.o., linke und rechte Seiten verschiedene Darstellungen.

Beispiel Korrespondenz (<->)

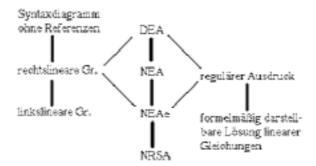
Endlicher Automat <-> regulärer Ausdruck <-> Typ-3-Grammatik <-> geschlossene Lsg. linearer Gleichungen

Bemerkung Charakterisierung von regulären Sprachen

Direkter Nachweis: Finde reg. Ausdruck, reg. Grammatik oder endlichen Automaten Pumping-Lemma (Destruktiv)

Abschlußeigenschaften $(L_1, L_2 \text{ regulär} \Rightarrow L_1 \cup L_2 \text{ regulär})$

Übersicht über Korrespondenzen und Äquivalenzen der Chomsky-Hirarchie



Satz Endliche Automaten <---> regulärer Ausdruck

<=: Regulärer Ausdruck --> NEAε. Induktion über Aufbau von regulären Ausdrücken.

 $r=\emptyset => Ar$: erkennt nichts. ..., $r=r_1r_2$: Automaten konkatenieren

=>: DEA --> Regulärer Ausdruck. MANNA: Gegeben: DEA als Transitionsdiagramm. Neuer Startzustand S und Endzustand f. Streiche einen Zustand, setze direkte Pfeile für alle Durchläufe und beschrifte korrekt. Fortsetzen, bis nur ein Pfeil: regulärer Ausdruck

2. Beweis: Menge $R_{ij}^{\ k}$ = Menge aller Worte durch Übergang q_i nach q_j mit höchstens $q_1,...,q_k$ als Zwischenzustände.

 $R_{ij}^{\ k} = \{\ w \in \Sigma^* \mid \ \tilde{\delta}(q_i, w) = q_j, \ \tilde{\delta}(q_i, Linker\ Teil\ von\ w) \in \{q_1, ..., q_k\}\ \}.$

Satz Pumping-Lemma, UVW-Theorem

Sei L reg. Sprache. Dann \exists $n \in N$: Jedes $z \in L$ mit $|z| \ge n$ zerlegbar in z=uvw mit $|uv| \le n$, $|v| \ge 1$ $(v \ne \epsilon)$, $uv^iw \in L$ \forall $i \ge 0$

Beweis: Anschaulich. Pfad, Zustand doppelt,...

Definition Abschlußeigenschaft

 $\mathcal{L}_i = \{ L \mid L \text{ ist Typ-i-Sprache} \}. \text{ Speziell: } \mathcal{L}_3 = \{ L \mid L \text{ reguläre Sprache } \}$

f: $\ell \to \ell$ (z.B. Permutation), g: $\ell \times \ell \to \ell$ (z.B. Konkatenation)

Gilt $f(\ell_i) \subseteq \ell_i$, so f erfüllte Abschlußeigenschaft. Analog Negat. Analog $g(\ell_i \times \ell_i) \subseteq \ell_i$

Satz Reguläre Operationen (5 Stück)

Sind L₁, L₂ regulär, so auch:

 $L_1 L_2$, $L_1 \cup L_2$, L_1^* , $L_1 \cap L_1$, Σ^* - L_1

Beweis: \cap durch Automaten mit \times , siehe Übung. Komplement durch Automaten, F := Q - F Redeweise: \mathcal{L}_3 abgeschlossen unter \cdot , \cup , \cap , *, C

GÜ Satz Abschluß unter speziellen Funktionen

 \mathcal{L}_3 abgeschlossen unter Substitution $\sigma: \Sigma \to \mathbf{P}(\Delta^*)$, Homomorphismus h: $\Sigma \to \Delta^*$,

inversem Homomorphismus h^{-1} : $\Delta^* \to \Sigma$

Beweis: Substitution: Induktion über Aufbau regulärer Mengen oder anschaulich: Jede Über-

führung durch einen NEAε ersetzen, der mit ε-Übergängen angeschlossen wird.

Homomorphismus: A' liest $x \le$ Arbeitsweise emuliert, als ob A h(x) liest. Induktion

Definition Entscheidbarkeit zu Typ-3 der Chomsky-Hirarchie

<=>Es gibt zu Problem einen Algorithmus, der immer hält, und zu jeder Instanz des Pro-

blems korrekte Antwort liefert. Beispiel: Totschleife eines Programms

Satz über Kardinalität von $L \in \mathcal{L}_3$

 $L(A) \neq \emptyset \iff A$ akzeptiert Wort w mit |w|<n

L(A) unendlich <=> A akzeptiert Wort mit n \leq |w|<2n

Satz Entscheidbare Aussagen für Typ-3-Grammatiken

1) $w \in L$, 2) $L(A) = \emptyset$, 3) $L = \Sigma^*$

Beweis: 1) DEA aufbauen, Wort lesen. Endzustand?

2) Alle Worte w mit |w|<n durchprobieren. Oder:

X:=F. X:= $X \cup \{q\}$ für $q \notin X$ und \exists a mit $\delta(q, a) \in X$. Solange noch

Veränderungen. $q_0 \in X$?

3) Komplementären Automaten betrachten, dann 2)

3 <u>Kellerautomaten</u>

3.1 Definition von Kellerautomaten

EA reichen nicht zur Erkennung kontextfreier Sprachen!

Definition Kellerautomat

 $KA = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$

Q: Endliche Menge, Zustandsmenge

Σ: Eingabealphabet

Γ: Kelleralphabet

δ: Abbildung (Transitionsfunktion). δ: $Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to \mathbf{P}(Q \times \Gamma^*)$

mit $\delta(q, a, Z)$ endlich für jedes Tripel (q, a, Z)

 $q_0 \in Q$: Anfangszustand

 $Z_0 \in \Gamma$: Startsymbol des Kellers (Keller-Grundsymbol)

 $F \subseteq Q$: Endzustandsmenge

Definition "Erkennen"

Variante 1: Restwort & Keller leer

Variante 2: Restwort leer, KA in einem Endzustand

Definition Konfiguration

 $(q, w, \gamma) \in Q \times \Sigma^* \times \Gamma^*$. q ist aktueller Zustand, w das Restwort und γ der Kellerinhalt

Ausgangskonfiguration: (q_0, w, Z_0) .

Folgekonfigurationen durch Relation — definiert. $(q, aw, z\alpha)$ — $(p, w, \gamma\alpha)$ für

$$(p, \gamma) \in \delta(q, a, z)$$

Definition KA erkannte Sprache

Leerer Keller:
$$N(A) = \{ w \in \Sigma^* \mid (q_0, w, z_0) \mid -^* - (q, \varepsilon, \varepsilon), q \in Q \}$$

Definition Transitionsdiagramm für KA

Syntax: a, A/BCD. a gelesen, A auf Keller. a weglesen, BCD auf Keller schreiben

Definition Darstellung KA als Semi-Thue-System

 $\delta(q, a, X) \ni (p, \gamma) = X q a \rightarrow \gamma p$ mit invertiertem Keller!. X Keller, q Zustand, a Symbol Nichtdeterministisch. Teilweisen Determinismus durch Wort-Ende-Symbol #.

3.2 Parsing-Methoden & Kellerautomaten

Parsing: Syntaktische Zergliederung.

Parser: Aufstellen eines Ableitungsbaumes.

Gilt alles für kontextfreie Grammatiken

Definition Ableitungsbaum (Mit -->)

- 1. Geordneter Baum
- 2. Jeder Knoten beschriftet
- 3. Wurzel mit S beschriftet
- 4. Knoten kann nur Nachfolger haben, wenn mit Nichtterm beschriftet. Nachfolger sind

die
$$X_1, ..., X_k$$
 mit $X \to X_1 X_2 ... X_k$ bzw. ε , falls $X \to \varepsilon$

==> Blätter v.l.n.r. bilden Satzform

GÜ Definition ... Entscheidungsbaum

Zu jeder Satzform alle möglichen Ersetzungen in den Nachfolgeknoten

Definition Kanonische Ableitung (Nach fester Regel)

Kanonische Linksableitung, wenn in jedem Schritt das am weitesten links stehende Nichtterm ersetzt wird. Analog Kanonische Rechtsableitung

Bemerkung Allgemeine Parsing-Methoden

Top-Down-Parsing: S vorgeben, versuchen, w zu erreichen

Bottom-Up-Parsing: w vorgeben, Regeln rückwärts anwenden, versuchen, S zu erreichen

Konstruktion KA für Top-Down-Parsing

Semi-Thue-Darstellung:

$$\begin{array}{lll} X \to X_1 X_2 ... X_k & => & X \ q \to X_k X_{k-1} ... X_1 \ q & & & & & & & & \\ \text{Für alle a} \in \Sigma & => & a \ q \ a \to \ q & & & & & & & & & & \\ \end{array} \tag{Auffressen!}$$

Konstruktion KA für Bottom-Up-Parsing

$$X \to X_1 X_2 ... X_k => X_1 X_2 ... X_k q \to X q$$
 (Inversion!). δ hier verallgemeinert! Für alle $a \in \Sigma => q a \to a q$ (Richtige auffressen!)

Übersicht Chomsky-Hierarchie

	Typ-III	Typ-II	Typ-I	Typ-0
Grammatik	Reguläre G. · rechtslineare G. · linkslineare G.	Kontextfreie G. (Normalform: Chomsky, Greibach)	Monotone G. (Normalform: Kontextsens. G.)	Phrasenstruktur-G.
Sprache	Reguläre Sp.	Kontextfreie Sp.	Kontextsensitive Sp.	Aufzählbare Sp.
Weitere Charakterisierung:	Reguläre AusdrückeLösung rek.Mengengl.	· Rekursive Gl.	-	Wird von TM aufgezählt
Erkennender Automat	EA	(N-det.) KA	Einschränkung der TM	TM
Beispiel		Pascal ohne "Variablen vor Nutzung deklariert"		

Übersicht Schachtelung der Sprachklassen

Endliche Sprachen ⊂

Typ-III \subset

Det. kf. Sprachen (haben det. KA) ⊂

Typ-II \subset

Typ-I ⊂

Entscheidbare Sprachen ⊂

Typ-0 (Aufzählbar) \subset

Alle Sprachen $(UP(\Sigma^*))$

Beispiele Sprachen

L_d = Diagonalsprachen: Nicht aufzählbar

aⁿbⁿcⁿ: Typ-I

aⁿbⁿ: Det. kf. Sprache ⊂ Typ-II

Satz Pumping-Lemma für kontextfreie Sprachen

Zu $L \in \mathcal{L}_2 \exists n \in \mathbb{N}, \forall z \in L, |z| \ge n \exists Zerlegung z=uvwxy mit$

1) $|vwx| \le n$, 2) $|vx| \ge 1$, 3) $uv^i wx^i y \in L$

Spezialfall für reguläre Sprachen: Rechtslinear: u=v=ɛ. Linkslinear: x=y=ɛ

Beweisidee: Ableitungsbäume

4 Compilerbau

4.1 Einführung

Definition Compiler

Erkennender Automat, der Struktur auswertet, falls das "Wort" (Programm) zur (Typ-II-) Sprache gehört.

Bemerkungen ... Kontextfreie Sprachen

L vom Typ-II <=> ∃ Kellerautomat (i.a. nicht-det.), der L erkennt.

∃ kontextfreie Sprachen, die von keinem det. KA erkannt. Für Praxis nicht relevant

Relevant: Unterklasse der deterministischen kf. Sprachen.

Definition Look-Ahead

Ansatz: Q= Γ , d.h. Zustände und Symbole im Keller identisch. => $q_n ... q_1 a \rightarrow q'$

Mit Look-Ahead: $q_n ... q_1 a \beta \rightarrow q' \beta, \beta \in \Sigma^*, a \in \Sigma \cup \{\epsilon\}$

Mit Look-Ahead von genau k Symbolen: $q_n...q_1a \beta \rightarrow q'\beta$, $\beta \in \Sigma^k$, $a \in \Sigma \cup \{\epsilon\}$

Definition LL(k), LR(k)

LL(k): Von Links lesen, Linkskanonische Abl., dabei k Sym. Look Ahead. Top-Down-Parsing.

LR(k): Von Links lesen, Rechtskanonische Abl., dabei k Look Ahead. Bottom-Up-Parsing.

Definition Kontextfreies Item einer kf. Sprache

Zustand eines erkennenden KA, $[X \rightarrow \alpha . \beta]$ bei $(X \rightarrow \alpha \beta) \in P$

Formal: Tripel $(X, \alpha, \beta) \in N \times (N \cup T)^* \times (N \cup T)^*$. $X \to \alpha\beta$ soll erledigt werden, bis α fertig. Für Erkennung einer kf. Grammatik, d.h. ohne Look-Ahead.

Definition Item-Kellerautomat einer kf. Grammatik

 $G = (T, N, P, S). \ \ G' := (T, \, N \cup \{\, S'\,\}, \, P \cup \{\, S' \rightarrow S\,\}, \, S'). \ \ KA \ \ K = (Q, \, \Sigma, \, \Gamma, \, R, \, q_0, \, Z_0, \, F)$

Q= Γ =Menge aller kontextfreien Items. Σ =T, q_0 =[S' \rightarrow .S], Z_0 = ε , F={[S' \rightarrow S.]}.

 $R=R_{Expansion} \cup R_{TerminalerShift} \cup R_{Variablenshift}$.

 $R_{\text{Expansion}} = \{ [X \rightarrow \beta.Y\gamma] \rightarrow [X \rightarrow \beta.Y\gamma] [Y \rightarrow .\alpha] \quad | \quad [X \rightarrow \beta.Y\gamma], [Y \rightarrow .\alpha] \in Q \}$

 $R_{\text{TerminalerShift}} = \qquad \{ \; [X \rightarrow \beta.a\gamma] \; a \rightarrow [X \rightarrow \beta a.\gamma] \qquad \qquad \\ \mid \; [X \rightarrow \beta.a\gamma] \in Q, \; \; a \in \Sigma \}$

 $R_{\text{VariablenShift}} = \qquad \{ \ [X \rightarrow \beta.Y\gamma] \ [Y \rightarrow \alpha.] \rightarrow [X \rightarrow \beta Y.\gamma] \quad | \ [X \rightarrow \beta.Y\gamma], \ [Y \rightarrow \alpha.] \in Q \}$

Definition k-Kopf eines terminalen Wortes $t \in T^*$

 $k \ge 0, \# \notin T, t = t_1 t_2 ... t_n$. $k : t = \{ t_1 t_2 ... t_k, \text{ falls } n \ge k. t_1 t_2 ... t_n \#, \text{ falls } n < k \}$

Definition Menge First_L(w)

 $w \in (N \cup T)^*$. First, $(w) = \{ k : u \mid w => u, u \in T^* \}$

Beispiel: $S \rightarrow ab \mid aSb$. First₁(S)={a}, First₂(S)={aa, ab}, First₃(S)={aaa, aab, ab#}

Definition Verallgemeinerung First_k($w\Omega$)

 $First_{k}(w\Omega) = \{ k : u \mid x \mid w => u, (x \in \Omega \cap T^{*}) \lor (x \# \in \Omega) \}, \Omega \subseteq \{ k : t \mid t \in T^{*} \}$

Definition Kontextsensitives Item einer kf. Grammatik

 $A \rightarrow \alpha\beta$, $k \ge 0$, Ω Menge von k-Köpfen. => $[A \rightarrow \alpha.\beta; \Omega]$ kontextsensitives Item

Ableitungsprozeß soweit fortgeschritten, daß α abgeleitet ist; auf das aus $\alpha\beta$ abgeleitete terminale Wort folgen Symbol-Sequenzen mit Länge \leq k aus Ω .

Definition Eigenschaft LL(k)

<=> Für alle Ableitungssituationen gilt:

Aus $S = ^L \mu \ A \ \chi = >^{A \to v} \mu v \chi = >^* \mu \gamma$ und $S = >^L \mu \ A \ \chi = >^{A \to w} \mu w \chi = >^* \mu \gamma' \ , \ \mu, \ \gamma, \ \gamma' \in T^*, \ \chi, \ v, \ w \in (T \cup N)^*, \ A \in N, \ und \ k : \gamma = k : \gamma' \ folgt: \ v = w$

Satz Algorithmus LL(k)

Eingabe: Bel. kf. Grammatik, $k \ge 0$. Ausgabe: KA A=(Q, Σ , Γ , R, q_0 , z_0 , F),

 $L(G) = N(A) \; (,, leerer \; Keller"). \; \Gamma = Q, \; \Sigma = T, \; q_0 = [S' \rightarrow .S; \; \{\#\}], \; F = bel. \; z_0 = q_0.$

- 1. $Q:=\{q_0\}, R:=\emptyset$.
- 2. Wähle noch nicht betrachtetes $q \in Q$, $q = [X \rightarrow m.n; \Omega]$
- 3. Falls n= ε , dann R:=R \cup {q \rightarrow ε } ("Pop-Regel")
- 4. Falls n=tg, t \in T, g \in (N \cup T) * , dann q':=[X \rightarrow mt.g; Ω], Q=Q \cup {q'}, R=R \cup {qt \rightarrow q'}

("Terminaler Shift")

5. Falls n=Bg, B \in N, g \in (N \cup T) * , dann q':=[X \rightarrow mB.g; Ω], und für jede Regel B \rightarrow b;:

 $h_i := [B \rightarrow .b_i; First_k(g\Omega)]$

B ableiten, danach kommt Kontext Ω

 $Q:=Q \cup \{q'\} \cup \mathsf{U}\{h_i\}$

 $R:=R \cup \{q \ t_i \rightarrow q' \ h_i \ t_i \mid t_i \in Firstk(b_i g \ \Omega) \}$ (", Variablenshift")

Alle Ableitungen im korrekten Kontext

6. Solange 2) bis alle Zustände betrachtet.

Theolnf

Satz LL(k)

Sprache LL(k) <=> LL(k)-Algorithmus erzeugt det. KA (sonst n.det. KA)

Satz Kf. Sprachen genau die durch (n.-det.) KA definierten Sprachen

Beweis: =>: Konstruiere n.-det. KA (top-down-/ bottom-up-Parsing)

<=: Ohne Beweis

Definition Klasse der det. kf. Sprachen

Klasse der Sprachen, zu denen ein det. KA existiert.

Definition LL(k)-Klassen

Klassen von Grammatiken, welche garantieren, daß die zugehörigen Sprachen det. kf. sind.

Nur beispielsweise: $LL(0) \subseteq LL(1) \subseteq ... \subseteq LL(k) \subseteq LL(k+1) \subset (\neq)$ Det. kf. Sprachen

Bemerkung:

Grammatik nicht in einer dieser Klassen ≠> äquivalente Grammatik nicht in einer der

Klassen

L det. kf. ≠> Es ex. zugehörige Grammatik aus einer der obigen Klassen.

Satz LL(k)

 \exists kf. Grammatiken zu det. Sprachen, die **nicht** LL(k) $\ \forall$ k $\geq \! 0$

Beispiel LL(k)

 $Z \rightarrow X$, $X \rightarrow Yc$, $X \rightarrow Yd$, $Y \rightarrow a$, $Y \rightarrow bY$ nicht LL(k).

 $Z \rightarrow X$, $X \rightarrow YX'$, $X' \rightarrow c$, $X' \rightarrow d$, $Y \rightarrow a$, $Y \rightarrow bY$ dazu äquivalent und LL(1).

Satz Linksrekursion

Grammatik besitzt Linksrekursion => Bei Top-Down-Parsing Nicht-Determinismus

Linksrekursion durch Rechtsrekursion ersetzbar.

Satz LL(k)

Grammatik LL(k) => Grammatik besitzt keine Linksrekursion

Satz LL(k) mit ε-Produktionen

G LL(k) mit ϵ -Produktionen => \exists G' LL(k+1) ohne ϵ -Produktionen, die L(G)\{ ϵ } produziert

G LL(k+1) ohne ϵ -Produktionen => \exists äquivalentes G' LL(k) mit ϵ -Produktionen

Übersicht Pumping-Lemma

Für reguläre Sprachen

Für kontextfreie Sprachen

Für jede Sprache L \exists ein $n \in \mathbb{N}$, so daß für $z \in L$, $|z| \ge n$

gilt:

 $z=uvw \\ |uv| \le n \\ |v| \ge 1$ $|vx| \ge 1$

 $u\ vi\ w\in L \qquad \qquad \forall\ i\geq 0 \qquad \qquad u\ vi\ w\ xi\ y\in L$

Beweisidee: Mindestens ein

doppelter Zustand in Zustandsfolge

Beweisidee: Chomsky-Normalform.

Ableitungsbaum Tiefe i

=> Worte $|w| \le 2^{i-1}$ per Induktion. n:= 2^k mit k:= Anz. der Non-Terms. => Tiefe >k => Im Pfad ein

Non-Term. doppelt. Von unten her bis zu diesen beiden Non-Terms.

Bemerkung Anwendung des Pumping-Lemma

Zeigen, daß L nicht kf. ist

5 <u>Turing-Maschinen</u>

5.1 Die Turing-Maschine

Bemerkung Motivation

Formalisierung von "Berechenbarkeit", "Entscheidbarkeit", "Algorithmus".

Modell für einen universell programmierbaren Computer.

Definition Deterministische Turingmaschine (DTM, TM)

 $M=(Q, \Sigma, \Gamma, \delta, q_0, B, F).$

Q: Endliche Menge von Zuständen

 Γ , Γ : Eingabe- und Bandalphabet, $\Sigma \subseteq \Gamma$, $B \in \Gamma \setminus \Sigma$ (B = Blank), $\Gamma \cap Q = \emptyset$

 $δ: Q \times Γ \rightarrow Q \times Γ \times \{l,r\}$ partielle Überführungsfunktion

 $q_0 \in Q$: Anfangszustand, $F \subseteq Q$ Endzustände

Definition Konfiguration einer TM

Wort α q β mit α , $\beta \in \Gamma^*$, q \in Q. Das Steuerwerk ist im Zustand q, α β ist die (relevante) Zeichenkette des Bandinhaltes. Der Kopf liest dabei das erste Zeichen von β bzw. ein B, falls $\beta = \varepsilon$. In α und β können B auftreten.

Definition Transformations relation —

Definition L(M): Die von TM akzeptierte Sprache

 $L(M) := \{ w \in \Sigma^* \mid Es \text{ gibt } p \in F, \alpha, \beta \in \Gamma^*, q0w \models *--- \alpha p \beta \}$

Bemerkung Techniken zur Konstruktion einer TM

- Speichern von Informationen im Zustand
- Mehrere Bandspuren
- Setzen von Markierungen auf zusätzlichen Spuren
- Verschieben von Bandinhalten
- Modularisierung durch Unterprogramme

Diese Techniken ändern nichts an dem Modell der TM

Bemerkungen ... Modifikationen des Modells der TM

- Beidseitig unendliches Band (Simulieren durch einseitig unendliches zweispuriges Band)
- Mehrbändige TM (Simulieren durch ein Band mit 2k Spuren, Kopfmarkierungen)
- Nichtdeterministische Turing-Maschine (NTM) (k:=max $|\delta|$. Auf 2. Band systematisch alle Folgen über $\{1,...,k\}$, auf 3. Band deterministisch TM simulieren, deren Wahlmöglichkeit durch 2. Band festgelegt ist)
- Mehrdimensionale TM (Band k-dimensionales Feld, in 2k-Richtungen unendlich, aber immer nur endlich viele Zeichen ≠ B auf "Band". (Induktion, Dimension verringern: Rechteck um belegte Felder. Codieren auf 1. Band durch **...*... *... *... *... *... *... * Auf 2. Band Abstand zum nächsten linksstehenden Trenn-Symbol "*" speichern)

Satz Äquivalenz der Sprachen der verschiedenen Modifikationen

Satz Beschränkung des Bandalphabetes

 Σ Alphabet für TM M, dann gibt es Codierung, h invertierbarer Codierungs-Homomorphismus, und TM M' mit Γ ={0, 1, B}, h(L(M)) = L(M')

Beweis: Binärcodierung. Durch "Speichern im Zustand" Symbol decodieren, dann Turing-Tafel auswerten. Beim Lesen von "B" erst h(B) schreiben!

Definition Generator-Turingmaschine

Besitzt Ausgabeband, auf dem Kopf nie nach links. # als Trennzeichen auf Ausgabeband

 $G(M) := \{ w \in \Sigma^* \mid \# \ w \ \# \ wird \ irgendwann \ auf \ Ausgabeband \ geschrieben \}$ ist die von M erzeugte Sprache

Definition Sprache rekursiv aufzählbar

L rekursiv aufzählbar <=> Es gibt GTM M mit L=G(M)

Satz L rekursiv aufzählbar <=> L=L(M) für eine TM M

Wichtig: Die TM M muß nicht für jede Eingabe halten!

Beweis: =>: Konstruktion TM aus GTM: Wort suchen. Hält nicht unbedingt!

<=: GTM zählt Worte aus Σ^* auf, simuliert darauf die TM und schreibt evtl. auf Ausgabeband. Simulierte TM könnte nicht halten!

Bemerkung Probleme dieses Satzes

- Wie erzeugt man alle Worte? (Nutze lexikographische Ordnung.)
- TM M kann bei gewissen Eingaben niemals halten. (Erzeuge nach CAUCHYSCHEM Diagonal-Verfahren Paare (i, j) und versuche, das i-te Wort in j Schritten zu erkennen)

Definition Lexikographische Ordnung

- 1. Vergleichskriterium: Wortlänge. Kürzere Worte zuerst.
- 2. Vergleichskriterium: 1. verschiedenes Symbol durch Ordnung im Alphabet.

Definition Sprache rekursiv

L rekursiv <=> L=G(M) Generator-TM, zählt in lexikographischer Ordnung auf

Satz L rekursiv \iff L = L(M), M TM, die für jede Eingabe hält

Beweis: =>: GTM simulieren, Wort in Ausgabe suchen. Wortlänge überschritten => Abbruch

<=: Σ* lexikographisch aufzählen, M simulieren.

Satz,L rekursiv" bzgl. Komplement abgeschlossen

 $L \subseteq \Sigma^*$ rekursiv => $\Sigma^* \setminus L$ rekursiv

Beweis: Σ* aufzählen, in Ausgabe der GTM suchen

Satz Sprache und Komplement rekursiv aufzählbar => Beide rekursiv

L und $CL = \Sigma^* \setminus L$ rekursiv aufzählbar => L und CL rekursiv

Beweis: Eingegebenes Wort **parallel** in Ausgabe der beiden GTM suchen, findet es in endlich vielen Schritten in der einen oder der anderen

Korollar L Sprache, so gilt genau eine der folgenden Aussagen:

- 1. L, CL rekursiv
- 2. Weder L noch CL rekursiv aufzählbar
- 3. Entweder L oder CL rekursiv aufzählbar und die jeweils andere nicht rekursiv aufzählbar

5.2 Entscheidbarkeit, Unentscheidbarkeit und eine universelle TM

Definition Problem, Instanz, Lösung

Problem: Liste von Parametern und Fragestellung, auf die in Abhängigkeit von Parametern eine Antwort zu geben ist.

Instanz eines Problems: Problem mit festgelegten Werten für die Parameter.

Lösung eines Problems: Algorithmus, der für alle Instanzen die Fragestellung beantwortet.

Parameter und Fragestellung müssen syntaktisch korrekt sein!

Definition Sprache des Problems

 $L_{\Pi} := \{ w \mid w \text{ ist Instanz von } \Pi \}, \Pi \text{ ist ein Problem }$

Definition Entscheidungsproblem

Problem, bei dem die Fragestellung eine Ja/Nein-Antwort verlangt

Besteht aus L_{\square} , Menge $Y_{\square} \subseteq L_{\square}$ und der Fragestellung "Ist $w \in L_{\square}$ in Y_{\square} ?"

Definition Entscheidbar, unentscheidbar, semi-entscheidbar

Entscheidungsproblem Π entscheidbar, wenn die Sprache Y_{Π} rekursiv, sonst unentscheidbar. Semi-entscheidbar, wenn Y_{Π} rekursiv aufzählbar.

Definition Halteproblem

M eine TM, w ein Wort. "Hält M bei der Eingabe von w?"

Definition GÖDEL-Nummer

Codierung einer TM M=(Q, {0, 1}, {0, 1, B}, δ , q_1 , B, { q_2 }). x_1 :=0 x_2 :=1 x_3 :=B R_1 :=1 R_2 :=r Codiere $\delta(q_i, x_j) = (q_k, x_l, R_n)$ eindeutig durch das Wort $\alpha_t = 1$ 0 i 1 0 i 1 0 i 1 0 i 1 0 n Codiere M als <M $> := 111 <math>\alpha_1$ 11 α_2 11 ... α_r 111, α_i alle Überfühungen. Gödel-Nummer L_{TM} := { <M> | M ist TM } \subseteq {0, 1} *

Lemma L_{TM} ist rekursiv

Beweis: GM zählt Worte über {0, 1} lexikographisch auf und schreibt nur die syntaktisch korrekten auf Ausgabeband

Korollar Problem "Ist $w \in L_{TM}$?" entscheidbar

Korollar $L \subseteq \{0, 1\}^*$ rekursiv aufzählbar <=> L=L(M) mit <M> $\in L_{TM}$

Beispiel Nicht-rekursiv-aufzählbare Sprache

Mengen $\{0,1\}^*$ und LTM aufzählen. $A(i,j)=1 <=> Maschine M_j$ erkennt Wort w_i . $A(i,j)=0 <=> Maschine M_j$ erkennt Wort w_i nicht. Diagonalsprache L_d definieren durch: $w_i \in L_d <=> A(i,i)=0$. Annahme: Ld rekursiv aufzählbar $=> \exists$ TM M, die L_d über $\{0,1,B\}$ akzeptiert. $=> \exists$ i mit $<M>=<M_i>. <math>=> w_i \in Ld <=> w_i \in L(M) <=> w_i \in L(Mi) <=> A(i,i)=1$. Widerspruch!

Definition Universelle Sprache L_n

w Wort, <M> Codierung einer TM M. <M> w Konkatenation der Wörter <M> und w. Universelle Sprache L_u:={ <M> w | M akzeptiert w}

Satz $L_{\scriptscriptstyle u}$ rekursiv aufzählbar

Beweisidee: 3 Bänder. 1: Eingabeband <M> w, 2: Kopie von w, 3: Zustand der simulierten Maschine. Diese TM M_w: universelle TM.

Satz L_n nicht rekursiv

Beweis: Indirekt, Annahme => CL_d rekursiv => Wid.

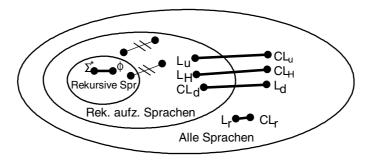
Übersicht Rek. (aufz). Sprachen und ihre Komplemente

 $L_r := \{ \langle M \rangle \mid L(M) \text{ rekursiv } \}$

 $L_n := \{ \langle M \rangle | M \text{ akzeptient } w \}$

 $L_H := \{ \langle M \rangle w \mid M \text{ hält bei Eingabewort } w \}$

Universelle Sprache



Satz L_H rekursiv aufzählbar, aber nicht rekursiv

Beweis: Rekursiv aufzählbar: TM simulieren.

Nicht rekursiv: Indirekt. Annahme: L_H rekursiv => TM hält für jedes Wort <M> w. ??? "Um herauszufinden, ob ein Algorithmus Eingabe akzeptiert bzw. hält, bleibt nichts anderes übrig, als ihn laufen zu lassen und zu warten."

Satz Typ-0-Sprachen genau die rekursiv aufzählbare Sprachen

L=L(G) Typ-0 <=> L=L(M) für TM M

Beweis: <=: n-det. Worte $[a_1,a_1]...[a_n,a_n]$ erzeugen. Regeln wie z.B. $q[x,a_i] \rightarrow [y,a_i]$ q'. Bei Erreichen eines Endzustandes $q_f[x,a_i] \rightarrow a_i$ 1. Komponenten vernichten.

=>: TM als "universeller Rechner" kann Ableitung von Typ-0 simulieren

Definition Linear beschränkter Automat (LBA)

Nicht-det. TM mit Einschränkung: Symbole ⊄ und \$ als linke und rechte Endmarkierung,die nie verändert und nie überschritten werden.

M LBA, L(M) := { $w \mid w \in (\Sigma \setminus \{ \emptyset, \$ \})^*, \emptyset w$ wird von M akzeptiert }

Satz Typ-1-Sprachen genau die von LBA erkannten Sprachen

L=L(G) Typ-1 <=> L=L(M) für LBA M

Beweisidee: <=: n-det. Worte $\not\subset$ [z,a₁,a₁]...[z,a_n,a_n] \$ erzeugen, [z,a_i,a_i] ein Symbol. z gibt für ein Symbol Zustand des Kopfes an, z=# für restliche Symbole (Werden aktuell nicht vom Kopf gelesen). Regeln wie z.B. [q, x, a_i] [#, z, a_{i+1}] \rightarrow [#, y, a_i] [q', z, a_{i+1}]. Bei Erreichen eines Endzustandes [z, x, a_i] \rightarrow a_i 1. Komponenten vernichten. Grammatik ist monoton =>: Erzeuge n.-det. Worte $\not\subset$ w \$ und simuliere durch LBA die Grammatik. Endmarkierungen nicht zu überschreiten, da Grammatik monoton ???

Satz Hierarchiesatz (CHOMSKY)

 $\mathcal{L}_{\rm 3} \subset \ \mathcal{L}_{\rm 2} \subset \ \mathcal{L}_{\rm rek} \subset \ \mathcal{L}_{\rm rek,aufz.} = \mathcal{L}_{\rm 0} \quad \mbox{mit echter Enthaltensbeziehung}$

Ohne Beweis oder klar.

Bemerkung Hierarchiesatz

Keine echte Typ-0-Grammatik bekannt, die nicht Typ-1

Satz Reguläre Sprachen genau die von linkslinearer Grammatik erzeugte Sprachen

Beweis: => Induktiv über Aufbau regulärer Mengen

<=: Reguläre Sprachen gegenüber Spiegelung abgeschlossen => Aus rechtslinearer Grammatik folgt linkslineare Grammatik

Übersicht Korrespondenzen und Äquivalenzen der Chomsky-Hierarchie

Ansage!

Sprachklasse	\mathcal{L}_3	\mathcal{L}_{2}	\mathcal{L}_1	$\mathcal{L}_{ m rek}$	$\mathcal{L}_{ ext{rek.aufz.}} = \mathcal{L}_0$
Grammatik	rechtslinear, linkslinear, Syntaxdiagramm ohne Referenzen	Kontextfreie Gr., (CNF, GNF) Syntaxdiagramme mit Referenzen	Monotone Gr., Kontextsensitive Gr.		Unbeschränkte Gr., Uneingeschr. Gr., Phrasenstruktur-Gr.
Erkennender Automat	DEA, NEA, NEAε, NRSA	KA	LBA	TM, die für alle Eingaben hält	TM
Sonstige Sprachdefinitione n	Regulärer Ausdr., reguläre Mengen	"lineares" Gleichungssystem		Lexikographisch aufzählbar	(Rekursiv) aufzählbar
∪, o, *, R	Abg.	Abg.	Abg.	Abg.	Abg.
Komplement	Abg.		Abg.	Abg.	
Durchschnitt	Abg.		Abg.	Abg.	Abg.
Substitution	Abg.	Abg.	Abg.		
"Ist w∈ L?"	Е	Е	Е	Е	U
"Ist L = Ø?"	Е	E	U	U	U
$, Ist L = \Sigma^*?$	Е	U	U	U	U
,,Ist $L_1 = L_2$?"	Е	U	U	U	U

TheoInf

"Ist Kompl. in	Triv.	U	Triv.	Triv.	U
£?"					

6 Komplexitätstheorie

6.1 Grundzüge

Definition Off-line-TM

Ein schreibgeschütztes Eingabeband und mehrere einseitig unendliche Arbeitsbänder

Definition Bandkomplexität S(n)

M Off-Line-TM und S: $N \rightarrow N$ Funktion derart, daß M für Eingabe der Länge n nicht mehr als S(n) Felder auf jedem Speicherband bearbeitet

Definition Zeitkomplexität T(n)

M mehrbändige TM mit beidseitig unendlichen Bändern, T: N→N Funktion derart, daß M für jede Eingabe der Länge n nicht mehr als T(n) Kopfbewegungen durchführt

Vereinbarung ... Bandkomplexität

Jede TM benötigt wenigstens ein Feld für jede Eingabe, benötigt daher max(1, S(n)) Felder.

Vereinbarung ... Zeitkomplexität

 $T(n) \ge n+1$, da die Eingabe komplett gelesen werden soll. max(n+1, T(n))

6.2 Komplexitätsklassen

Definition Komplexitätsklassen DSPACE, DTIME, NSPACE, NTIME

 $DSPACE(S(n)) := DBAND(S(n)) := \{ L \mid Es \ gibt \ TM, \ die \ L \ erkennt \ und \ für \ jede \ Eingabe \ der \ Länge \ n \ höchstens \ max\{1, S(n)\} \ Felder \ auf \ jedem \ Band \ (zusätzlich \ zur \ Eingabe) \ benötigt \ \}$

Sprachfamilie von Bandkomplexität S(n).

DTIME(T(n)) := DZEIT(T(n)) analog **Zeitkomplexität T(n)**.

 $NSPACE(S(n)) := NBAND(S(n)) := \{ L \mid Es \ gibt \ NTM, \ die \ L \ erkennt \ und \ für \ jede Eingabe der Länge n höchstens <math>max\{1, S(n)\}$ Felder auf jedem Band (zusätzlich zur Eingabe) benötigt $\}$

Sprachfamilie von Bandkomplexität S(n).

NTIME(T(n)) := NZEIT(T(n)) analog **Zeitkomplexität T(n)**.

Satz Bandkompression

 \forall c>0: DSPACE(S(n)) = DSPACE(c · S(n)), NSPACE(S(n)) = NSPACE(c · S(n))

Beweis: Zusammenfassen von Symbolen unter Hinzufügen neuer Regeln

Satz Lineare Beschleunigung

1) $\liminf T(n)/n = \infty \implies \forall c>0$: $DTIME(S(n)) = DTIME(c \cdot S(n))$. NTIME analog.

2) $T(n)=r \cdot n, r>1 \Rightarrow \forall \epsilon>0 DTIME(S(n))=DTIME((1+\epsilon) \cdot n)$

(Beliebig nahe an 1-Linearität, aber nie vollständig T(n)=n)

Beweis: Zusammenfassen von Regeln

Satz Anzahl der Bänder hat keinen Einfluß auf Bandkomplexität

Beweis: Bei Reduktion von k-bändiger auf 1-bändige TM keine Änderung des Platzbedarfes

Satz $L \in DTIME(T(n)) \Rightarrow L=L(M)$ für einbändige TM, die $T(n)^2$ -zeitbeschränkt

Beweis: Erste TM nach n Schritten max. n Felder beschrieben. Auf einbändiger TM max. für jeden Schritt Köpfe zusammensuchen, also alle n Felder durchsuchen. \Rightarrow T(n)²

Bemerkung NTM

Diese Sätze gelten analog auch für NTM

Bemerkung Es gibt beliebig "schwere" Probleme

Zu f(n) "berechenbare" Fkt. gibt es rekursive Sprachen, die nicht von f(n)-Zeit- bzw.

Bandbeschränkter TM erkannt werden können.

Beweis über Diagonalisierungsargument.

6.3 Die Groß-O-Notation

Definition O(f), o(f), $\Theta(f)$

 $f: \mathbb{N} \rightarrow \mathbb{R}$.

 $O(f) := \{ \ g \colon \mathbf{N} \to \mathbf{R} \mid \exists \ c > 0 \ \exists \ n_0 \in \mathbf{N} \ \forall \ n \geq n_0 \colon \ 0 \leq g(n) \leq c \cdot f(n) \ \} \ g \text{ h\"ochstens so schnell wie } f$

 $o(f) := \{ \ g : \mathbf{N} \rightarrow \mathbf{R} \mid \forall \ c > 0 \ \exists \ n_0 \in \mathbf{N} \ \forall \ n \geq n_0 : \ 0 \leq g(n) < c \cdot f(n) \ \} \ g \ langsamer \ als \ f$

 $\Theta(f) := \{ g \mid \exists c_1, c_2 > 0 \mid \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : 0 \le c_1 \cdot f(n) \le g(n) \le c_2 \cdot f(n) \}$ g und f gleich schnell

Bemerkung Alternative Definition

 $g \in O(f) \le \exists c>0 \text{ mit } \lim |g(x)/f(x)| = c$

 $g \in o(f) <=> \lim |g(x)/f(x)| = 0$

Satz Abgeschlossenheit der O-Klassen

 $\Phi \in \{O,\,o,\,\Theta\},\ h \in \Phi(f),\ g(n) \geq 0$

 $h+g\in \Phi(f+g),\ h\cdot g\in \Phi(\ f\cdot g\),\quad \forall\ k>0:\ k+h,\, k\cdot h\in \Phi(f)$

6.4 Hartnäckige Probleme

Bemerkung Effizienz

Bisher: Welche Probleme sind lösbar bzw. nicht lösbar?

Jetzt: Welche lösbaren Probleme sind effizient lösbar?

Idee: Kann ein Algorithmus Problem effizient lösen, so auch verwandte Probleme.

Definition Reduktion, Turing-Berechenbarkeit, Turing-Reduzierbarkeit

 S_1 , S_2 Sprachen, $L_1 \subseteq S_1$, $L_2 \subseteq S_2$.

Reduktion von L₂ auf L₁: $f: S_2 \rightarrow S_1$ mit $w \in L_2 <=> f(w) \in L_1$

Reduktion **Turing-Berechenbar**, wenn DTM zu $w \in S_2$ die Ausgabe y = f(w) liefert.

 L_2 (**Turing-**) **Reduzierbar** auf L_1 , wenn es (Turing-) Reduktion von L_2 auf L_1 gibt.

Satz Zeitbeschränkung bei Turing-Reduzierung

 $\boldsymbol{L_2}$ turing-reduzierbar auf $\boldsymbol{L_1}$ durch f, $\boldsymbol{T_2}(n)$ -zeitbeschränkte TM, und $\boldsymbol{L_1}$ wird durch

 $T_1(n)$ -zeitbeschränkte TM erkannt, dann kann L_2 durch $(T_2(n) + T_1(T_2(n))$ -zeitbeschränkte

TM erkannt werden.

Beweis: $|w|=n \Rightarrow f(w)$ wird in $T_2(n)$ Schritten berechnet $\Rightarrow |f(w)| \le T_2(n) \Rightarrow T_1(T_2(n))$

Bemerkungen ... Effizienz

Übergang Zweibändige TM → Einbändige TM => Quadratischer Zeitvergrößerung

=> Effizienz ≠ Linearer Zeitaufwand, da Maschinenunabhängigkeit gefordert

=> Effizienz ≜ Polynomieller Zeitaufwand

Definition P-Klassen

 $P := \mathsf{U}_{\scriptscriptstyle i \geq 1} \, \mathsf{DTIME}(\,\, n^{\scriptscriptstyle i} \,)$

 $NP := U_{i>1} NTIME(n^i)$

 $PSPACE := U_{i>1} DSPACE(n^i)$

NPSPACE := $U_{i>1}$ NSPACE(n^i)

Satz $P \subseteq NP \subseteq NPSPACE = PSPACE$

Beweis: P ⊂ NP klar, da DTM auch als NTM aufgefaßt werden kann

 $NP \subseteq NPSPACE \colon TM \; T(n) \; Zeitbeschränkt => Kann \; nicht \; mehr \; als \; T(n) \; Felder \; beschreiben$

PSPACE = NPSPACE: Zu zeigen: NSPACE(n^i) = DSPACE(n^{2i})

6.5 NP-Vollständigkeit

Definition L₂ polynomiell auf L₁ reduzierbar

<=> Es gibt Turing-Reduktion durch polynomiell zeitbeschränkte TM, die $L_{\scriptscriptstyle 2}$ auf $L_{\scriptscriptstyle 1}$ reduziert

Schreibweise: $L_2 \leq_n L_1$

Bedeutung: L₂ nicht wesentlich schwieriger als L₁

Satz Polynomielle Reduzierbarkeit

1.
$$L_1 \in P$$
, $L_2 \leq_p L_1 \implies L_2 \in P$
2. $L_3 \leq_p L_2$, $L_2 \leq_p L_1 \implies L_3 \leq_p L_1$

Definition NP-hart, NP-vollständig

Sprache L **NP-hart**, falls für alle L' \in NP: L' \leq_{n} L

Sprache L **NP-vollständig**, falls L NP-hart und $L \in NP$

Lemma P=NP?

Gibt es NP-vollständige Sprache, die in P liegt, so ist P=NP.

Gibt es NP-vollständige Sprache, die in NP\P liegt, ist P≠NP

Satz SAT ist NP-Vollständig

SAT = Erfüllbarkeit boolescher Ausdrücke in KNF

Beweisidee: 1) SAT ∈ NP (N.-det. Belegung erzeugen, prüfen)

2) \forall L \in NP => L \leq_p SAT: Verhalten einer polynomiell-zeitbeschränkter NTM durch logische Formeln beschreibbar; diese in polynomieller Zeit konstruierbar und von polynomieller Länge.

Bemerkung Zeigen, daß $L \in NP$

Einfach, wenn bereits $L' \in NP$ bekannt.

1) $L \in NP$ 2) $L' \leq_n L$

Beispiele NP-vollständige Probleme

TSP (Traveling Salesman Problem)

Partitionierung

Definition Co-NP

 $L \in Co-NP \iff CL \in NP$

Bemerkung P unter Komplementbildung abgeschlossen

Bemerkung Unbeantwortete Fragestellungen

1) P=NP oder P≠NP

2) NP=Co-NP oder NP≠Co-NP

3) NP=PSPACE oder NP≠PSPACE

Korollar Problem NP-vollständig => Problem (heute) nicht effizient lösbar

7 Berechenbarkeit

Bemerkungen ... "Was sind alle Leistungen, die ein universeller Computer erbringen kann?"

S. C. Kleene: Jede Programmleistung einer Funktion $f: N^k \rightarrow N$, d.h. Daten werden als natürliche Zahlen codiert. "*partiell-rekursive Funktionen*"

Alan Turing: Auf TM lassen sich Funktionen f: $N^k \rightarrow N$ programmieren. **Turing**-

berechenbar

Alonzo Church: Definition des λ -Kalküls => λ -berechenbare Funktionen (LISP, SCEME)

Satz Alle drei Beschreibungen äquivalent

Satz Church'sche These

Alle Berechenbarkeitsbegriffe, die auf universellen Maschinenmodellen beruhen, sind

Theoretische Informatik

Seite 20 von 23

identisch.

Unbeweisbar, fehlt die präzise Definition von "universelle Maschine"; heute aber allgemein anerkannt.

$$F^{(k)} := \{ \text{ } f \text{: } N^k {\rightarrow} N \text{ } \text{ partielle Funktionen } \}$$

$$F := U_{k \in N0} F^{(k)}$$

Definition G := Menge der Grundfunktionen

- 1) Nullkonstante null \in F⁽⁰⁾ mit null() = 0, null \in **G**
- 2) Nullfunktion zero \in F⁽¹⁾ mit zero(x) = 0, zero \in **G**
- 3) Zählfunktion $\operatorname{succ} \in F^{(1)}$ mit $\operatorname{succ}(x) = x+1$, $\operatorname{succ} \in G$
- 4) Projektionsfunktion $\text{proj}_{j}^{k} \in F^{(k)}$ mit $\text{proj}_{j}^{k} (x_{1},...,x_{k}) = x_{j}, \ x_{1},...,x_{k}, \ j, \ k \in \mathbb{N}, \ 1 \leq j \leq k, \ \text{proj}_{j}^{k} \in \mathbf{G}$

Dies sind alle Funktionen aus G.

Definition Konstruktionsmechanismen

- 1) **Komposition**: $f \in F^{(n)}, f_1, ..., f_n \in F^{(m)}$. => $g(x_1, ..., x_m) = f(f_1(x_1, ..., x_m), ..., f_n(x_1, ..., x_m))$. Schreibweise: $g := S_n(f, f_1, ..., f_n)$.
- $\begin{aligned} 2) \ \textbf{Primitive Rekursion} : \ g \in & F^{(n)}, \ h \in & F^{(n+1)}. => f \in & F^{(n+1)} \colon \quad f(x_1,...,x_n,0) = g(x_1,...,x_n), \\ f(x_1,...,x_n,y+1) & = h(x_1,...,x_n,y,f(x_1,...,x_n,y)). \ \ Symbolisch: \ f \coloneqq R(g,h) \end{aligned}$
- 3) **Minimalisierung**: $f \in F^{(n+1)}$. $\mu(f) \in F^{(n)}$ mit $\mu(f)(x_1,...,x_n) := \min_{y \in N} \{ y \mid f(x_1,...,x_n,y)=0 \}$ Wenn f auf totale Fkt. eingeschränkt, so **Minimalisierung im Normalfall**

Definition Primitiv rekursive Funktion

- 1) Die Grundfunktionen sind primitiv rekursiv.
- 2) Die durch Komposition aus prim. rek. Fkt. gewonnenen Fkt. sind prim. rek. Fkt.
- 3) Die durch prim. Rek. aus prim. rek. Fkt. gewonnenen Fkt. sind prim. rek. Fkt.
- 4) Ist f prim. rek. Fkt., so aufgrund 1), 2), 3)

Klasse aller prim. rek. Fkt.: \mathbf{F}_{prim} .

 $F_{\scriptscriptstyle prim}$ Abschluß von G bzgl. Komposition und primitiver Rekursion.

Definition Allgemein rekursive Funktion

- 1) Die Grundfunktionen sind allgemein rekursiv.
- 2) Die durch Komposition aus allg. rek. Fkt. gewonnenen Fkt. sind allg. rek. Fkt.
- 3) Die durch prim. Rek. aus allg. rek. Fkt. gewonnenen Fkt. sind allg. rek. Fkt.
- 4) Die durch Minimalisierung im Normalfall aus allg. rek. Fkt. gew. Fkt. sind allg. rek.
- 5) Ist f allg. rek. Fkt., so aufgrund 1), 2), 3), 4)

Klasse aller allg. rek. Fkt.: \mathbf{F}_{allg} .

 F_{allg} Abschluß von G bzgl. Komposition, prim. Rek. und Minimalisierung im Normalfall.

Definition Partiell rekursive Funktion

- 1) Die Grundfunktionen sind partiell rekursiv.
- 2) Die durch Komposition aus allg. rek. Fkt. gewonnenen Fkt. sind allg. rek. Fkt.
- 3) Die durch prim. Rek. aus allg. rek. Fkt. gewonnenen Fkt. sind allg. rek. Fkt.
- 4) Die durch Minimalisierung aus allg. rek. Fkt. gew. Fkt. sind allg. rek.
- 5) Ist f allg. rek. Fkt., so aufgrund 1), 2), 3), 4)

Klasse aller part. rek. Fkt.: \mathbf{F}_{part} .

 F_{part} Abschluß von G bzgl. Komposition, prim. Rek. und Minimalisierung.

Bemerkungen ... Rekursion in Bezug auf Programme

Primitiv rekursiv: Programme, die nach abschätzbarer Zeit halten

Allgemein rekursiv: Programm, welches für alle Eingaben hält

Partiell rekursiv: Beliebiges Programm

 $Satz \quad \quad F_{prim} \subset F_{allg} \ \subset F_{part}, \quad jeweils \ aber \neq$

Beweis: Induktion, direkt aus Def.

Definition $F_{tot} := Klasse$ aller totalen Funktionen aus F

Satz $F_{allg} \subseteq F_{tot}$

Bemerkung Berechenbare Funktionen abzählbar

- Schreibe als Text, ordne lexikographisch
- Numeriere Grundfunktionen und Kompositionen, codiere durch endliche Nummernfolge

Bemerung Überabzählbar viele Funktionen f: $N^k \rightarrow N$

Mindestens soviele wie f: $N \rightarrow \{0,1,...,9\}$.

Definiere für $r \in (0,1)$: $f_r(i)=d_i$, wenn r dargestellt als $r = 0.d_1d_2...d_i$...

(0,1) überabzählbar, Beweis über Diagonalverfahren. Indirekt: Ann. $r_i \in (0,1)$ abzählbar.

In Tabelle r_i gegen Stellen. Bilde r mit $r = 0.d_1d_2..., d_k \neq d_{kk} => Wid.$

Beispiel Primitiv rekursive Funktionen

pred, -, +, ·, exp, !

Beispiel Allgemein rekursive, nicht primitiv rekursive Funktion

ACKERMANN-**Funktion** A(0,y)=y+1, A(x+1,0)=A(X,1), A(x+1,y+1)=A(x,A(x+1,y))

Berechnungsschema: Tabelle.

7.1 Der Universal Calculator

Bemerkung Der UC

- Universelle Maschine
- Schrittweise sequentiell
- Programme in prozeduraler Sprache formulierbar

Schema: Datenspeicher, Programmspeicher: Zuordnung $x_i \rightarrow n$ auf endlich vielen Plätzen Befehlsregister, Prozessor

Definition Instruktionen des UC

Verwendetes (unendliches) Alphabet

 $\{\underline{do}, \underline{if}, \underline{then}, \underline{goto}, \underline{else}, \underline{halt}, \leftarrow, =, (,), 0, S, P, x_1, x_2, \dots, \underline{start}, l_1, l_2, \dots \}$

1) do $x_i \leftarrow 0$ then goto l_n

 x_i :=0, l_p nächste Befehlsadr. x_i := x_i

2) $\underline{do} x_i \leftarrow x_j \underline{then} \underline{goto} l_p$

vii

3) do x_i ← S(x_i) then goto l_p
 4) do x_i ← P(x_i) then goto l_p

 x_{i}^{-} , P(0)=0 Modifizierte Diffe-

renz

- 5) goto $l_{\rm p}$
- 6) if $x_i = 0$ then goto l_p else goto l_q
- 7) halt

Instr. 1) und 7) immer ausführbar, 3), 4) und 6) nur, falls x_i und 2), falls x_i Wert besitzt

Definition Programm des UC

 $L = \{\text{start}, l_1, ...\}, I \text{ die Menge der Instruktionen}$

 $P \subseteq L \times I$ endliche Menge heißt Programm des UC, falls

- 1) P enthält genau ein Paar <start, i>, i∈I
- 2) Enthält P <1, i>, so daß in i die Folge "goto l_p " vorkommt, so enthält P genau ein $< l_p$, i' >

Definition Programmvariablen eines Programmes

Enthält P das Zeichen x, so ist x, Programmvariable von P.

Definition Ablauf eines Programmes mit Programmvariablen $x_1,...,x_m$

Folge s_0 , s_1 , ... (endlich oder unendlich) mit

- 1) $s_i = \langle l_i, f_i \rangle, \ l_i \in L, \quad f_i : \{x_1, ..., x_m\} \rightarrow N$ partielle Funktion
- 2) $l_0 = start$
- 3) <start, goto $11 > \in P$ (Nur Konvention!)
- 4) Ist $\langle l_i, h \rangle \in P$, so ist h im Zustand s_i ausführbar
- 5) Ist <l_i, h> \in P, h \neq , <u>halt</u>", so ist l_{i+1} der Inhalt des Befehlsregisters und f_{i+1} die Variablenbelegung nach Ausführung von h
- 6) Ist $\langle l_k, \underline{halt} \rangle \in P$, so ist die Folge endlich und s_k deren letztes Element

Definition UC-Berechenbarkeit

Partielle Funktion f: $\mathbb{N}^k \rightarrow \mathbb{N}$ UC-berechenbar, wenn es Programm P des UC gibt mit

- 1) P besitzt Variablen $x_1,...,x_m, m \ge n$ und eine ausgezeichnete Variable $x_r, r=n$ oder $r=n+1 \le m$
- 2) Ist $f(a_1, ..., a_n)$ definiert, so terminiert die Berechnungsfolge zu P mit $f_0 = (x_1 \rightarrow a_1, x_2 \rightarrow a_2, ..., x_n \rightarrow a_n)$ so, daß deren letztes Element $s_k = < l_k, f_k >$ ist und $f_k(x_r) = f(a_1, ..., a_n)$ gilt.

Satz Alle berechenbaren Funktionen (partiell rek. Fkt.) sind UC-berechenbar

z.z.: Grundfunktionen berechenbar. Bew.: Explizit UC-Programm angeben

z.z.: UC-berechenbare Funktionen unter Komposition, primitiver Rekursion und Minimalisierung abgeschlossen.

Bew.: In Textform ansatzweise Konstruktionsvorschriften: Eingabevariablen kopieren, Labels neu numerieren, Ablaufdiagramm für Minimalisierung.

Definition Universelles UC-Programm ω

- Gibt Codierung durch natürliche Zahlen für alle Programme π des UC, bezeichnet mit π' , für alle Eingaben $(a_1,...,a_n)$, bezeichnet durch $(a_1,...,a_n)'$ und alle Resultate a, bezeichnet a'.
- ω hat zwei Eingabevariablen
- Mit Eingabe von π' und $(a_1,...,a_n)'$ errechnet ω auf Ausgabevariablen $(f_{\pi}(a_1,...,a_n))'$
- Ist $f\pi(a_1,...,a_n)$ nicht definiert, so hält ω nicht.

Satz Universelles UC-Programm ω

Spezielle Codierung (Gödelisierung) der Konstrukte des UC.

5) goto l _p	2^{p}
1) $\underline{do} x_i \leftarrow 0 \underline{then} \underline{goto} l_p$	$2^{p} \cdot 3^{k+1} \cdot 5$
3) $\underline{do} x_i \leftarrow S(x_i) \underline{then} \underline{goto} l_p$	$2^{p} \cdot 3^{k+1} \cdot 7$
4) $\underline{do} x_i \leftarrow P(x_i) \underline{then} \underline{goto} l_p$	$2^{p} \cdot 3^{k+1} \cdot 11$
2) $\underline{do} x_i \leftarrow x_i \underline{then goto} l_p$	$2^{p} \cdot 3^{k+1} \cdot 13^{j+1}$
6) if $x_i = 0$ then goto l_p else goto l_q	$17^{k+1} \cdot 19^p \cdot 23^q$
7) halt	29

Codierung des Programms π start: goto p; 1: Instr1; 2: Instr2; ...

$$\pi' = 2^{q0} \cdot 3^{q1} \cdot 5^{q2} \cdot \dots \cdot p_{n+1} q^n$$

Variablen von ω:

 x_1 : π' . x_2 : $(a_1,...,a_n)'$. x_3 : Aktuelles Label des simulierten Programmes. x_4 : Gödelnummer der aktuellen Instruktion. x_5 Hilfsvariablen

Programmablauf: klar. Operation auf x₂!